• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Monkey fights help explain tipping points in animal societies

Bioengineer by Bioengineer
February 13, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: A.J. Haverkamp.

Previous studies of flocks, swarms, and schools suggest that animal societies may verge on a "critical" point–in other words, they are extremely sensitive and can be easily tipped into a new social regime. But exactly how far animal societies sit from the critical point and what controls that distance remain unknown.

Now an analysis of conflicts within a captive community of pigtail macaque monkeys has helped to answer these questions by showing how agitated monkeys can precipitate critical, large-scale brawls. In the study, fights were often small, involving just two or three monkeys, but sometimes grew to be very large, with as many as 30 of the 48 adults in the society. Bryan Daniels at the ASU-SFI Center for Biosocial Complex Systems, together with David Krakauer and Jessica Flack of the Santa Fe Institute, used ideas and models from statistical mechanics to ask whether the monkeys' conflict behavior was near a critical point. They report what they found in this week's Nature Communications.

Daniels, Krakauer, and Flack discovered that the distance from the critical point can be measured in terms of the "number of monkeys" that have to become agitated to push the system over the edge. Daniels says that in this system "agitating four or five individuals at a time can cause the system to destabilize and huge fights to break out." However, Daniels says, each monkey makes a distinct contribution to group sensitivity–and these individual differences may allow distance from the critical point to be more easily controlled. Group members that break up fights can move the system away from the critical point by quelling the monkeys that contribute most to group sensitivity. Other group members, by targeting and agitating these individuals, can move the system towards the critical point and ready it for reconfiguration.

Animal societies may benefit from the group sensitivity that lets them cross critical social thresholds. Being sensitive allows for rapid adaptation–think fish switching from foraging mode to escape mode–but it can also make a society less robust to individuals' mistakes. This tradeoff between robustness and adaptability is related to distance from the critical point.

An open question is whether animal societies collectively adjust their distance from criticality, becoming less sensitive when the environment is known and more sensitive when the environment becomes less predictable. Daniels says, "I think we've just scratched the surface."

###

Media Contact

Jenna Marshall
[email protected]
505-946-2798
@sfi_news

http://www.santafe.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Heat Shock Boosts COMMD Activation and Pathogen Defense

November 13, 2025
blank

Which Originated First: The Sponge or the Comb Jelly? Insights from HHMI Scientists

November 13, 2025

Ammonium and Warming Shape Frogs from Larvae

November 13, 2025

From Water to Land: How Animal Life Made the Epic Transition

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uric Acid Links Glucose Disposal and Kidney Disease

Heat Shock Boosts COMMD Activation and Pathogen Defense

Unraveling RNA Processing with Advanced Sequencing Techniques

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.