• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Monitoring polar ice melting by combining data from different satellites

Bioengineer by Bioengineer
August 3, 2022
in Health
Reading Time: 3 mins read
0
(a) Boundaries of Sentinel-3 (blue circle) and CryoSat-2 (yellow loop). The study region is indicated in light blue. (b) Comparison between the elevation changes in the study region extracted without filtering (left) and with filtering (right). Filtering removes outliers via data clustering, improving the accuracy of the results.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Antarctic region is particularly vulnerable to climate change, and studies have shown that the melting of Antarctic ice sheets has accelerated considerably in recent years. As a result, sea levels continue to rise globally, threatening the lives of coastal inhabitants.

(a) Boundaries of Sentinel-3 (blue circle) and CryoSat-2 (yellow loop). The study region is indicated in light blue. (b) Comparison between the elevation changes in the study region extracted without filtering (left) and with filtering (right). Filtering removes outliers via data clustering, improving the accuracy of the results.

Credit: The Authors, doi 10.1117/1.JRS.16.034514.

The Antarctic region is particularly vulnerable to climate change, and studies have shown that the melting of Antarctic ice sheets has accelerated considerably in recent years. As a result, sea levels continue to rise globally, threatening the lives of coastal inhabitants.

Given the potentially devastating effects of the melting ice sheets in Antarctica, scientists have been closely monitoring their topography and height for decades. This is usually done using satellites equipped with special altimeter radars, which provide a nearly continuous coverage of most of the Antarctic region. In many cases, data from multiple satellite missions are combined to achieve higher accuracy and precision as well as to compare data from different periods. However, combining these data is not a straightforward process because of the different instrumentation and processing techniques involved.

In a recent study, researchers led by Professor Jingjuan Liao from the Chinese Academy of Sciences tested a new approach that combined elevation data of the Antarctic ice sheet from two different satellites. As explained in their paper published in SPIE’s Journal of Applied Remote Sensing, their goal was to obtain a more accurate map of the latest elevation changes in the Antarctic ice sheet as well as validate their data analysis methods.

The data used in the study came from radar altimeters installed in CryoSat-2 and Sentinel-3, and corresponded to surface elevation changes in the ice sheet between 2016 and 2019. CryoSat-2, which was launched in 2010, provides greater coverage of the Antarctic ice sheet and has better accuracy in complex edge regions of ice sheets. In contrast, Sentinel-3, launched in 2016, offers higher resolution under most conditions and performs better in large flat areas.

To improve the accuracy of the results, the team first filtered the data using a clustering algorithm. Essentially, the algorithm divided up the input data points into clusters according to their value and rejected clusters containing outliers (which likely represented large measurement errors).

Additionally, the team employed a fitting model designed to extract elevation changes from the combined satellite data while correcting for measurement biases. To validate the results of this model, they compared them with reliable elevation data gathered using other altimeters.

Their analyses showed that the average elevation of the ice sheets had decreased at a rate of 4.3 ± 0.9 cm/year during 2016-2019. However, the inner continental ice sheet, where the terrain is mostly flat, had shown a milder decrease of only 1.1 ± 0.3 cm per year. “We derived a correlation between elevation changes and the surface slope, with rapid elevation changes occurring more often in areas with large terrain undulations, such as mountainous and marginal ice shelves,” Liao said.

With these results, the researchers are hopeful that their approach would find applications in future investigations of Antarctic ice sheets. “Our study presents an effective method for improving the measurement accuracy by combining elevation information from new radar altimeters. This could enable a long-term monitoring of global climate change in the Antarctic region,” Liao said.

Continued efforts on this front could help mitigate the adverse effects of global warming in the poles.

Read the Gold Open Access article by S. Li, J. Liao, and L. Zhang, “Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters,” J. Applied Remote Sensing 16(3) 034514 (2022), doi 10.1117/1.JRS.16.034514.



Journal

Journal of Applied Remote Sensing

DOI

10.1117/1.JRS.16.034514

Article Title

Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters

Article Publication Date

2-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Plug-in Resistance Engineering Inspired by Potato NLRome

October 29, 2025

Virtual Reality Eases Pain in Wound Care

October 29, 2025

Dr. Chan Mi Park’s Study Named Among Top 10 Anesthesia Papers of 2024

October 29, 2025

New Biosensor Detects Protein Associated with Depression and Schizophrenia in Saliva

October 29, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phosphatidylserine Shields Against Ischemia via Akt/mTOR Boost

Scientists Discover Why Malaria Parasites Contain Rapidly Spinning Iron Crystals

Multi-omic Insights into Aging Immune Dynamics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.