• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Molecular shape-shifting

Bioengineer by Bioengineer
December 13, 2022
in Chemistry
Reading Time: 2 mins read
0
Structure assembly
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The concept of remodeling is familiar to most people: those who have ever played with Lego bricks know that many combinations and structures possible from the same components. Typically, an attached manual describes the arrangement of the individual blocks and the shape of the final structure. Initially assembling only a few pieces can thereby already determine the way all other parts have to be attached. “Our model describes the rearrangement of building blocks in physical systems from a given structure”, explains Saeed Osat, the first author of the study. “If only a few pieces in a given structure are changed, they function as a seed that results in an entirely new composition.”

Structure assembly

Credit: MPI-DS / LMP

The concept of remodeling is familiar to most people: those who have ever played with Lego bricks know that many combinations and structures possible from the same components. Typically, an attached manual describes the arrangement of the individual blocks and the shape of the final structure. Initially assembling only a few pieces can thereby already determine the way all other parts have to be attached. “Our model describes the rearrangement of building blocks in physical systems from a given structure”, explains Saeed Osat, the first author of the study. “If only a few pieces in a given structure are changed, they function as a seed that results in an entirely new composition.”

Like in a Lego manual, there are certain rules on how the blocks need to be arranged. In the researcher’s model, the instructions for assembly are derived from a list of possible molecular interactions. These depend on the energy state of the system, the size of the seed and the non-reciprocal interactions between the components. “Under certain conditions, we can then observe multifarious reorganization into new shapes”, explains Ramin Golestanian, head of the Living Matter Physics department and director at the MPI-DS. “We identified a new learning rule which causes structures to dynamically shift their shape, depending on the non-reciprocal interactions between their parts”, he summarizes the results of the study.

In biology, rearrangement of building blocks happens constantly. Instead of disposing complex structures as a whole, they are disassembled into their individual parts which are used to build new compositions. The model may thus help to understand the principles of self-organization in living matter. Likewise, the principle of non-equilibrium synthetic and autonomous self-assembly may be useful in devising engineering strategies to design molecular robotic shape-shifters.



Journal

Nature Nanotechnology

DOI

10.1038/s41565-022-01258-2

Article Title

Non-reciprocal multifarious self-organization

Article Publication Date

12-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.