• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Molecular brake on human cell division prevents cancer

Bioengineer by Bioengineer
June 28, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Karolinska Institutet, Sweden, and the University of Sussex, England, have discovered that the process of copying DNA generates a brake signal that stalls cell division. This molecular brake ensures that the cell has two complete copies of DNA before it divides and thus prevents DNA damage and cancer development. The study is published in the scientific journal Molecular Cell.

One of biology's great mysteries is how a single fertilised egg can generate millions of cells that together make up a human body, while simultaneously restricting growth to prevent lethal diseases such as cancer. This process is strictly regulated by our DNA, the genetic cookbook carried by each single cell in our body. Before a cell divides and generates two new daughter cells, it has to copy its DNA. How cells decide when to divide is a long-standing question in science.

Now, an international collaboration between Karolinska Institutet, Sweden, and the University of Sussex, England, led to the discovery of a built-in molecular brake on human cell division. The researchers revealed that the process of copying DNA generates a brake signal that stalls cell proliferation. This mechanism ensures that the cell has two complete copies of DNA before it divides and that all cells in a human contain similar genomes.

"By creating cells that cannot copy their DNA and by following protein activities over time in single cells, we found that DNA replication blocks the enzymes that trigger cell division. Immediately after DNA replication is completed, the machinery that starts cell division is activated. This fundamental mechanism contributes to determining when human cells will divide," says Arne Lindqvist, senior researcher at the Department of Cell and Molecular Biology at Karolinska Institutet who led the study.

The researchers also show that the molecular brake ensures that the amount of DNA damage is minimised. When the brake is not functional, the cell divides before it is ready resulting in large amounts of DNA damage.

"Our study highlights the dangerous consequences of hasty cell division and provides important clues on how cells might gain DNA mutations that ultimately give rise to cancer," says lead author Bennie Lemmens, postdoctoral researcher at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet.

###

The research was supported by the Wenner-Gren Foundation, the Swedish Research Council and the Swedish Cancer Society, among others.

Publication: "DNA replication determines timing of mitosis by restricting CDK1 and PLK1 activation". Bennie Lemmens, Nadia Hegarat, Karen Akopyan, Joan Sala-Gaston, Jiri Bartek, Helfrid Hochegger, Arne Lindqvist. Molecular Cell, online 28 June 2018, doi: 10.1016/j.molcel.2018.05.026

Media Contact

Press Office, Karolinska Institutet
[email protected]
@karolinskainst

http://ki.se/english

http://dx.doi.org/10.1016/j.molcel.2018.05.026

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2018.05.026

Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Four Exome Capture Platforms on DNBSEQ

Comparing Four Exome Capture Platforms on DNBSEQ

October 25, 2025
EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    192 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Long-acting Injectable Buprenorphine Lowers Inpatient Care Needs

AI Models for Urothelial Neoplasm Classification Validated

Rotavirus RNA in Wastewater Reflects US Infection, Vaccination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.