• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Molecular basis of neural memory — reviewing ‘neuro-mimetic’ technologies

Bioengineer by Bioengineer
March 29, 2018
in Biology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The overwhelming quest in cognitive science has been (and still is) to scientifically describe mental processes on a molecular level, notably memory and intelligence, and attempt to mimic them technologically. But really 'intelligent' computers can only arise from an appreciation of neural reality with credible principles about the nature of neural mentation.

A function called 'Memory' is central to the intelligence of both computers and brains, though each type arise from quite different processes. For example, computers processes (computation) and memory are well characterized theoretically (information theory) and practically (manufacture of memory chips). But as there is no binary code for emotions, the computer is deficient of any emotive quality. By contrast, biologic neurons and neural nets remember on the basis of multinary (not binary) processes. They experience emotive states that confer meaning (value) to all stimuli. But what are the details of the biologic neural process?

To clarify these, Marx & Gilon propose a tripartite mechanism of neural memory and provide a chemographic description. It involves the interactions of neurons with their surrounding extracellular matrix (nECM) and dopants, comprising trace metals (copper, zinc, etc) and neurotransmitters (more than 100 NTs). The NTs elicit both physiologic reactions and psychic states. Essentially, the neuron forms metal-centered complexes within the surrounding nECM, to encode cognitive units of information (cuinfo). Thus, neural memory is stored outside the highly extended cell, but readily available for recall.

Within that context, Marx & Gilon review the IBM Brain Chip and the Blue Brain Project, both being technologies which represent themselves as mimicking biologic neural systems, one as a chip, the other as a simulation. But both are found wanting, due to their inappropriate modeling of neuron morphology and the lack of emotive qualifiers. Consequently, the demotive IBM Brain Chip and the Blue Brain Simulation are inadequate actual and virtual constructs of neural systems and cannot be said to be truly 'neuromimetic'.

Marx & Gilon propose a novel, but credible biochemical model, a tripartite mechanism for neural memory. This implies a 'paradigm shift' for cognitive science, a new way of thinking about mental processes. Expectedly, the tripartite model could help steer the development of technologies truer to neurobiology and neurochemistry.

###

For more information about the research, please visit: http://www.eurekaselect.com/159732

Reference: Marx G et al., Molecular Basis of Neural Memory. Part 8. Reviewing "Neuro-Mimetic" Technologies. Neuroscience and Biomedical Engineering, 2018, Vol 6, DOI: 10.2174/2213385206666180212125316

Authors:

Gerard Marx 1*, Chaim Gilon 2

1 MX Biotech Ltd., Jerusalem, Israel

2 Institute of Chemistry, Hebrew University, Jerusalem, Israel

*Correspondence: [email protected]

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

http://dx.doi.org/10.2174/2213385206666180212125316

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Ovalbumin Secretion by Reducing ER Stress

Boosting Ovalbumin Secretion by Reducing ER Stress

November 18, 2025
blank

METTL21C Gene Markers Linked to Pig Umbilical Hernia

November 18, 2025

Exploring Aluminum’s Role in Campo Rupestre Melastomataceae

November 18, 2025

ML Unlocks Key SNPs for Population Assignment

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diffusion Coefficient: New Marker for Retinoblastoma Progression

Boosting Ovalbumin Secretion by Reducing ER Stress

Exploring Clinical and Imaging Signs of Familial HLH

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.