• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Molecular ‘barcode’ helps decide which sperm will reach an egg

Bioengineer by Bioengineer
December 1, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study in mice provides insights on the processes that determine which sperm will reach an egg to fertilise it, a discovery that may aid infertility research

IMAGE

Credit: Lukas Ded (CC BY 4.0)

A protein called CatSper1 may act as a molecular ‘barcode’ that helps determine which sperm cells will make it to an egg and which are eliminated along the way.

The findings in mice, published recently in eLife, have important implications for understanding the selection process that sperm cells undergo after they enter the female reproductive tract, a key step in reproduction. Learning more about these processes could lead to the development of new approaches to treating infertility.

“Male mammals ejaculate millions of sperm cells into the female’s reproductive tract, but only a few arrive at the egg,” explains senior author Jean-Ju Chung, Assistant Professor of Cellular & Molecular Physiology at Yale School of Medicine, New Haven, Connecticut, US. “This suggests that sperm cells are selected as they travel through the tract and excess cells are eliminated. But most of our knowledge about fertilisation in mammals has come from studying isolated sperm cells and eggs in a petri dish – an approach that doesn’t allow us to see what happens during the sperm selection and elimination processes.”

To address this challenge, Chung and colleagues, including lead author Lukas Ded, who was a postdoctoral fellow in the Chung laboratory when the study was carried out, devised a new molecular imaging strategy to observe the sperm selection process within the reproductive tract of mice. Using this technique, and combining it with more traditional molecular biology studies, the team revealed that a sperm protein called CatSper1 must be intact for a sperm cell to fertilise an egg.

The CatSper1 protein is one of four proteins that create a channel to allow calcium to flow into the membrane surrounding the tail of the sperm. This channel is essential for sperm movement and survival. If this protein is lopped off in the reproductive tract, the sperm never makes it to the egg and dies. “This highlights CatSper1 as a kind of barcode for sperm selection and elimination in the female reproductive tract,” says Chung.

The findings, and the new imaging platform created by the team, may enable scientists to learn more about the steps in the fertilisation process and what happens afterwards, such as when the egg implants into the mother’s uterus.

“Our study opens up new horizons to visualise and analyse molecular events in single sperm cells during fertilisation and the earliest stages of pregnancy,” Chung concludes. “This and further studies could ultimately provide new insights to aid the development of novel infertility treatments.”

###

Reference

The paper ‘3D in situ imaging of female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice’ can be freely accessed online at https://doi.org/10.7554/eLife.62043. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Media Relations Manager

eLife

[email protected]

01223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Cell Biology and Structural Biology and Molecular Biophysics, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Cell Biology research published in eLife, visit https://elifesciences.org/subjects/cell-biology.

And for the latest in Structural Biology and Molecular Biophysics, see https://elifesciences.org/subjects/structural-biology-molecular-biophysics.

Media Contact
Emily Packer
[email protected]

Original Source

https://elifesciences.org/for-the-press/910605af/molecular-barcode-helps-decide-which-sperm-will-reach-an-egg

Related Journal Article

http://dx.doi.org/10.7554/eLife.62043

Tags: BiologyBiomechanics/BiophysicsCell BiologyDevelopmental/Reproductive Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

SwRI Study Validates Long-Standing Theoretical Models of Solar Reconnection

SwRI Study Validates Long-Standing Theoretical Models of Solar Reconnection

August 18, 2025
Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

August 18, 2025

Reusable ‘jelly ice’ stays cold without melting into water

August 18, 2025

A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering the Brain’s Navigational Compass: New Insights into Human Navigation

Danforth Center Grants Proof-of-Concept Funding to Four Teams Driving Agricultural Innovation

University of Houston Scientist Develops Innovative Drug Delivery System to Combat Lupus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.