• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mold contamination in sea salts could potentially spoil food

Bioengineer by Bioengineer
October 3, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – Like fine wines, sea salts are artisanal products that inspire talk of terroir, texture and provenance. Now there's evidence that they can also be sources of spoilage molds.

Research from Cornell University mycologist Kathie Hodge and doctoral candidate Megan Biango-Daniels reveals varying levels of mold contamination in commercial sea salts. Among those molds were important food spoilage molds like Aspergillus and Penicillium, and even some notorious producers of mycotoxins.

"This new finding contradicts the conventional wisdom that salts are sterile ingredients," said Biango-Daniels. The research stressed the importance of understanding the risk of using sea salt during food production.

Starting with seven different commercial salts, the researchers extracted living fungi and grew them in the lab for identification. The fungi discovered in the salt have the potential to spoil food when used as an ingredient and can introduce mycotoxins or allergens when consumed.

At the levels discovered in the study, about 1.7 spores per gram, you're not risking your health by sprinkling sea salt on food you are about to eat. But big problems may result when sea salts are used at home or industrially to make cured meats, fermented pickles or brined cheeses that mature over time – when molds introduced with sea salt can begin to grow and spoil food, maybe even rendering it toxic.

"Fungi can survive in surprisingly hostile places. They can't increase or grow in a container of sea salt – nothing can – but spores of some fungi survive quite happily there. Later they can wake up and make trouble in our food," said Hodge, associate professor in the Plant Pathology and Plant-Microbe Biology Section in Cornell's College of Agriculture and Life Sciences.

Fungi likely make their way into sea salts during their production from seawater or during storage and packaging. Sea salt production starts with seawater trapped in outdoor ponds called salterns. As the seawater evaporates, salt crystals form and are scraped up from the ponds and dried. Fungi may remain from microbes that live in the salterns, or their spores may fall in from the air over weeks of evaporation. Once fungi are in the salt, they have the potential to grow again once they encounter a moister environment. The researchers said microbial safety standards for this currently unregulated ingredient are needed to prevent food spoilage.

###

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Joe Schwartz
[email protected]
607-254-6235
@cornell

http://pressoffice.cornell.edu

http://blogs.cornell.edu/mediarelations/2017/10/03/mold-contamination-in-sea-salts-could-potentially-spoil-food/

Related Journal Article

http://dx.doi.org/10.1016/j.fm.2017.07.020

Share12Tweet7Share2ShareShareShare1

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.