• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Modular photoswitch cpLOV2 developed for optogenetic engineering

Bioengineer by Bioengineer
May 18, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ZHU Lei

Recently, Prof. WANG Junfeng from the High Magnetic Field Laboratory of the Hefei Institutes of Physical Science (HFIPS), together with international scholars, developed a novel circular permutated light-oxygen-voltage 2 (LOV2) to expand the repertoire of genetically encoded photoswitches, which will accelerate the design of novel optogenetic devices. The result was published in Nature Chemical Biology.

LOV2 domain is a blue light-sensitive photoswitch. In a typical LOV2-based optogenetic device, an effector domain is fused after the C-terminal Jα helix of LOV2, intending to cage the effector via steric hindrance in the dark. On photostimulation, light-triggered unfolding of the Jα helix exposes the effector domain to restore its function. Crafting a LOV2-based photoswitchable protein often takes tremendous engineering efforts to optimize each component and the connecting linker in between. Therefore, it is desirable to expand the current optogenetic toolbox by creating new modules that simplify these steps.

In this study, the researchers designed cpLOV2 using circular permutation, a robust protein engineering approach previously used to evolve new variants of genetically encoded fluorescent probes and biocatalysts. The nitrogen (N) and carbon (C) termini of cpLOV2 were created at the N-terminus of Jα helix while the old ones were connected by a glycine and serine-rich linker. Therefore, the effector could be fused before the N-terminal Jα of cpLOV2 in addition to the C-terminus in LOV2.

Using high resolution NMR spectroscopy and other techniques, the researchers demonstrated that the structural integrity and function of light-induced Jα dissociation of cpLOV2 are well maintained. cpLOV2 was also well worked in LOVTRAP and improved light-induced dimer (iLid), both are LOV2 based optical heterodimerization systems.

cpLOV2 provided more choices for optogenetic application developments. The researchers generated a series of hybrids by fusing LOV2 or cpLOV2 with different Ca2+ channel-activating and autoinhibition fragments derived from stromal interaction molecule 1, and found several novel cpLOV2 based optical actuators to gate ORAI1 Ca2+ channel, therefore they demonstrated that cpLOV2 could afford new caging surfaces to overcome limitations associated with wild type LOV2.

For effectors required a free N terminus to execute its full function, cpLOV2 is a better choice. A key protein involved in necroptosis, mixed lineage kinase domain-like (MLKL) protein, was the successful caged and uncaged in cpLOV2-MLKL but not MLKL-LOV2 to optical control of cell suicides.

Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising immunotherapeutic approach. However, the uncontrollable CAR T cell activity during therapy would cause severe side-effects e.g. cytokine release syndrome in some patients. Researchers designed cpLOV2 based optical heterodimerization systems (cpLID), and constructed photo-tunable split CAR (optoCAR). The therapeutic optoCAR T cells can be specifically activated by CD19 tumor antigen and blue light, and then proliferate to kill CD19+ Raji lymphoma cells.

In mouse model implanted with CD19+ Raji cells, researchers used upconversion nanoparticles (UCNPs) to convert the high tissue penetrative near-infrared light to blue light and activate the injected optoCAR T cells and achieved highly effective therapy of lymphoma tumor. OptoCAR T cells developed in this study permit the spatiotemporal and reversible control of T cell activities and cytokine production.

These encouraging results suggest optoCAR T cells could mitigate potential side effects without losing therapeutic efficacy. In the future, they plan to try “optogenetic immunotherapy” to treat different types of cancer.

###

Media Contact
ZHAO Weiwei
[email protected]

Original Source

http://english.hf.cas.cn/new/news/rn/202105/t20210513_269321.html

Related Journal Article

http://dx.doi.org/10.1038/s41589-021-00792-9

Tags: BiochemistryBiology
Share12Tweet8Share2ShareShareShare2

Related Posts

JUNO Successfully Completes Liquid Filling and Commences Data Acquisition

JUNO Successfully Completes Liquid Filling and Commences Data Acquisition

August 26, 2025
Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

August 25, 2025

Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

August 25, 2025

Molecular Compound Enables Photoinduced Double Charge Accumulation

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    146 shares
    Share 58 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diagnosing Rabies: A Guillain-Barré Syndrome Misidentification

Resistant Starch Boosts Gut Health in Ready Meals

Anti-IL-1 Agents in Kidney Transplant for Amyloidosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.