• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Modified peptides could boost plant growth and development

Bioengineer by Bioengineer
October 5, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy Dr Brett Ferguson

A new Australian study of peptide hormones critical for plant development could result in wide-ranging benefits for agriculture, tissue culture, and related industries, and even improve knowledge of peptides in humans.

The study, involving University of Queensland and University of Sydney researchers, synthesised and examined the function of CLE peptides, a relatively new class of the peptide hormone family in plants.

Dr Brett Ferguson of the Centre for Integrative Legume Research, in the School of Agriculture and Food Sciences at UQ, said the research was exciting because CLE peptides had essential roles in regulating plant growth and development, increasing productivity as well as adaptation to environmental factors.

"The CLE peptides can potentially be used to manipulate plant growth," he said.

"Even a small increase in yield can be massively important to agriculture – increasing food production and food security, whilst enhancing agricultural sustainability.

"Other studies have demonstrated that a variant of one CLE peptide can result in bigger tomato fruit."

"The findings open up new areas of research to study the specificity of function/structure in the CLE peptide signalling system in plants.

"This is a fast-growing research area due to its importance to agriculture, food, and other industries that involve plant growth and development."

Dr Ferguson said as well as relevance to plant development, the findings were relevant to animal peptide signalling.

"CLE peptides are specific to plants, but peptides and associated receptors are also found in animals/humans. Understanding mechanisms in plants can benefit our understanding of similar mechanisms in humans," he said.

Dr Ferguson said CLE peptides were very difficult to detect and extract from plants due to their small size and extremely low concentration. As a result, the peptides need to be chemically synthesised to test their function in biological assays.

"This is sophisticated chemistry with biological relevance," he said.

"Creating the target molecule then testing its biological function is not always done, especially when the molecule, such as the CLE peptide, is complex.

"The few CLE peptides that have been detected have all been modified with three arabinose sugar molecules linked together," he said.

"However, this 'triarabinose building block' is extremely difficult to synthesise. In our study, this important building block was synthesised using cutting-edge chemical synthesis methods.

"The building block that has been produced by the Payne Laboratory (School of Chemistry, the University of Sydney) is now readily available to access synthetic CLE peptide hormones to test their activity in plants using feeding studies."

Dr Ferguson said the study used the building block to chemically synthesise CLE40, which is a CLE peptide that modulates root development (by controlling the stem cell population of the root).

"This is obviously a very important peptide hormone to plant growth," he said.

"We also developed a new assay to feed the CLE40 peptide and monitor root growth.

"Using this assay, we showed that the building block is important to CLE40 activity.

Modifying root architecture via key developmental factors is viewed as a pivotal step in enhancing agricultural sustainability and food security.

"The building block can now be used to synthesise other CLE peptides, which can subsequently be used in feeding studies to establish their activity."

He said CLE peptides found to modify aspects of growth or yield had tremendous potential in agriculture (potential to increase food production), tissue culture (potential to stimulate shoot or root development), floriculture (potential to enhance flowering), and other industries that relied on plant growth. This might be achieved by feeding, or through targeted breeding or genome editing techniques.

###

The study, "Arabinosylation Modulates the Growth-Regulating Activity of the Peptide Hormone CLE40a from Soybean", is published in Cell Chemical Biology (doi: 10.1016/j.chembiol.2017.08.014).

Dr Ferguson's group also recently published the complete CLE peptide family of two legume species in Scientific Reports, in addition to publishing another article in Scientific Reports on a CLE peptide receptor having a role in regulating shoot architecture.

Media Contact

Dr Brett Ferguson
[email protected]
61-733-469-951
@uq_news

http://www.uq.edu.au

Related Journal Article

http://dx.doi.org/10.1016/j.chembiol.2017.08.014

Share14Tweet8Share2ShareShareShare2

Related Posts

Enhancing Soy 11S Globulin Extraction with Chaotropes

Enhancing Soy 11S Globulin Extraction with Chaotropes

August 28, 2025
Uncovered: Genetic Changes That Transformed Wild Horses into Rideable Companions

Uncovered: Genetic Changes That Transformed Wild Horses into Rideable Companions

August 28, 2025

Exploring Cellular Diversity Throughout Fruit Fly Metamorphosis

August 28, 2025

Nautilus Shells: Conservation, Crafts, and Legal Challenges

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Reveals Effective Medications for Alcohol Withdrawal

Progesterone Timing and Outcomes in Frozen Embryo Transfers

New Insights into Breast Reconstruction Preferences Among African American Women Published in Plastic and Reconstructive Surgery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.