• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Modified clay can remove herbicide from water

Bioengineer by Bioengineer
February 12, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Feng Yan et al.


By creating neatly spaced slits in a clay mineral, University of Groningen Professor of Experimental Solid State Physics Petra Rudolf was able to filter water to remove a toxic herbicide. After removing the pollutant by heating the material, the clay can be reused. Together with colleagues from Greece, Rudolf presents this proof of principle study in the journal Environmental Science Nano.

In the Netherlands, a lot of sugar beets are grown. On these fields, the herbicide chloridazon is widely used. This compound is toxic to humans, does not break down in nature and will eventually seep into the groundwater. Chloridazon concentrations in groundwater are currently below the safety threshold but as it is persistent in the environment, they are expected to increase. ‘Water purification plants can break down chloridazon using UV light – but the breakdown products of chloridazon are also toxic,’ explains Rudolf.

Pillars

Rudolf has acquired a technique to make well-defined nanocavities in clay, which she adapted to trap the herbicide. ‘Clay is a layered mineral,’ Rudolf explains. ‘The layers have a negative charge and are separated by positive ions. We can replace those with molecular pillars of our own design.’ The natural clays are first washed and then treated with sodium salts. The sodium replaces the natural positive ions between the layers. ‘These sodium ions are surrounded by a water mantle, which pushes the layers slightly further apart. By simply adding the pillar molecules to the water, they will replace the sodium.’

These pillars are usually made of silicon oxide, with an added chemical group that defines the affinity of the cavities. Rudolf: ‘In this case, we added copper ions to attract the chloridazon and its breakdown products.’ The functionalized clay absorbed the herbicide in significant amounts: nearly 900 milligrams per kilogram of clay. ‘This is a good result and we see scope to further increase the absorption.’ Furthermore, Rudolf and her colleagues have shown that the herbicide is removed by heating the clay, which can then be used again.

Groundwater

The first results were obtained using 10 times the highest concentration of chloridazon measured in the environment. Furthermore, the experiments were performed in clean water. ‘So, we need to repeat this in real groundwater, to see if other compounds affect the absorption.’ If all these tests yield positive results, the next question is how to make this clay into a product that can be used in water treatment. ‘The options are to add the clay to water and then retrieve it by filtration, or to build the clay into a membrane,’ explains Rudolf.

By altering the width of the slits and changing the affinity of the pillars, different chemical compounds could be caught by the functionalized clay. ‘We are testing systems to remove two other compounds from water,’ says Rudolf. ‘Furthermore, a similar system could be created using other layered materials, such as graphene oxide.’

###

Reference: F. Yan, K. Spyrou, E. Thomou, S. Kumar, H. Cao, M.C.A. Stuart, Y.T. Pei, D. Gournis and P. Rudolf: Smectite clay pillared with copper complexed polyhedral oligosilsesquioxane for adsorption of chloridazon and its metabolites. Environmental Science: Nano 2020, first online 21 Nov 2019

Media Contact
Rene Fransen
[email protected]

Original Source

https://www.rug.nl/sciencelinx/nieuws/2020/02/aangepaste-klei-haalt-onkruidverdelger-uit-water

Related Journal Article

http://dx.doi.org/10.1039/C9EN00974D

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesEcology/EnvironmentNanotechnology/MicromachinesPollution/Remediation
Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Ni2+ Enhancement of α-Bi2O3 Boosts Photocatalytic Efficiency

October 10, 2025

Barriers and Boosters for Nurses Caring for Seniors

October 10, 2025

Pan-Centromere Evolution in Brassica Plants Explored

October 10, 2025

Thermostable Enzymes Generating Superoxide Radicals Isolated

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1189 shares
    Share 475 Tweet 297
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ni2+ Enhancement of α-Bi2O3 Boosts Photocatalytic Efficiency

Barriers and Boosters for Nurses Caring for Seniors

Pan-Centromere Evolution in Brassica Plants Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.