• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Modeling organic-field effect transistors with a molecular resolution

Bioengineer by Bioengineer
October 13, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Field-effect transistors are key components of sensors, electrical circuits, or data storage devices. The transistors used to date have been mainly based on inorganic semiconductors such as silicon. More recently, organic materials have emerged, with semiconducting properties that have allowed the fabrication of organic field-effect transistors (OFETs). The use of organic components as the device active layer brings promising features such as easy processing and low cost. In addition to their device functionalities, OFETs have also developed into an important platform in the basic characterization of organic semiconductors, as they are now established as a useful tool to measure charge-carrier mobilities. Thus, providing a comprehensive description of OFET device performance becomes a key step in furthering the development of these devices and designing more efficient organic semiconductors. At the core of these investigations lie the device models, which provide the relationships between the measured current densities and the semiconducting properties of the organic materials. Needless to say, it is imperative that these OFET device models be accurate and reliable.

In an overview published in the Beijing-based National Science Review, scientists at the University of Arizona in the United States discuss recent advances in OFET device models that incorporate molecular-level parameters. In particular, they highlight the development of kinetic Monte Carlo-based device simulation methods and their successful application to the modeling of micrometer-sized OFETs. They also outline the paths require for further improvements of these molecular-level models for OFETs.

“In spite of the major differences in the charge-transport mechanisms of organic and inorganic semiconductors, it turns out that until recently the prevalent OFET device models were directly borrowed from those originally developed for FETs based on inorganic materials”, these scientists state in their review article entitled “Developing Molecular-Level Models for Organic Field-Effect Transistors.” They emphasize that: “Optimally, OFET device models should include factors such as the presence of discrete molecular levels, disorder, anisotropy, traps, grain boundaries, complex film morphology, and contact resistance. These factors are difficult to include as long as the organic semiconductor film is treated as a continuum medium. In other words, nano-scale, molecular-level details need to be incorporated into OFET device models.”

In recent years, kinetic Monte Carlo-based methods have seen very substantial developments, which now allows an efficient modeling of OFETs with a molecular resolution. These new models have opened the way to a deeper understanding of the OFET device physics and provided the ability to connect directly the microscopic processes to macroscopic device performance. They have been successfully applied to describe fundamental aspects of OFETs such as the actual thickness of the effective channel and the impact of the dielectric surface morphology, as well as the issue of nonlinear current characteristics encountered more recently.

The University of Arizona scientists forecast that: “Through such continuous developments, molecular-level OFET device models will become an increasingly useful platform in the investigation of OFET devices and serve as a complementary tool for routine data analysis”.

###

This work has been supported by the University of Arizona and the Georgia Institute of Technology.

See the article:

Haoyuan Li and Jean-Luc Brédas

Developing Molecular-Level Models for Organic Field-Effect Transistors

Natl Sci Rev, DOI: 10.1093/nsr/nwaa167

https://doi.org/10.1093/nsr/nwaa167

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Jean-Luc Brédas
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa167

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.