• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Mizzou biologist receives $1.6m NIH grant to study how genes shape the effects of diets

Bioengineer by Bioengineer
November 22, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MU Division of Biological Sciences

Many human health problems are thought to result from our modern diet, especially in industrialized countries. Foremost among these is a growing epidemic of obesity and obesity-related disorders, such as diabetes.

For a long time, scientists have assumed these diet-induced health problems lasted, at most, for the lifetime of the individual and would not be passed on to our kids. However, the recent discovery of so-called obesity genes — genes that increase certain people's risk of obesity — suggests otherwise.

How genes shape the effects of different diets is the goal of a new five-year, $1.6 million grant to the University of Missouri by the National Institutes of Health Institute of General Medical Sciences. The grant was awarded to Elizabeth King, who is an assistant professor in the Division of Biological Sciences in the College of Arts and Science.

Using fruit flies as a model system, King will use the funding to study how animals allocate nutritional resources to regulate their lifespan and reproduction in response to the availability of food in their environment, a fundamental process, called resource allocation.

"We need to know how environment shapes life history to understand why our rich diets cause problems like obesity and diabetes. In part, we have these problems because of the way our bodies allocate food resources," says King. "We can't replay our own human evolutionary history with different variations to see the effects, but we can do these experiments with fruit flies and see how different diets affect genes that control things like fat storage, reproduction, and energy use over time."

For the project, King will perform three large, controlled evolutionary experiments in the lab using fruit fly populations. Each population will be reared on one of three dietary regimes — rich, fluctuating, and deteriorating– and then observed over 25 generations to see what physiological responses and genetic changes evolve over time. King will compare the data between each population to see if and how, at both a whole organism and genetic level, each nutritional environment selects for different resource allocation patterns.

One experiment will test the popular thrifty-gene hypothesis, which has been used to explain today's modern obesity epidemic. According to this hypothesis, an environment punctuated by famine, like that experienced by humans throughout most of our evolutionary history, favors individuals with genes that make them more likely to store fat. These so-called "thrifty genes," according to the hypothesis, are detrimental in an environment where food is abundant.

"In the past, it was selectively advantageous to have a conservative, or thrifty, type of response to resource abundance; you could store those resources for when you had a famine period. Now that we don't experience famine conditions, that leads to over storage, which is no longer adaptive in our current environment," explains King. "One of the dietary environments we will test is this fluctuating resources, and we will see if that response does evolve or is reinforced under that condition as opposed to the other treatments where we would expect less fat storage."

The other two experiments will see what responses evolve in an abundant dietary environment versus one where nutritional resources deteriorate over time.

Fruit Fly

For the project, King will perform three selection experiments using fruit fly populations derived from the Drosophila Synthetic Population Resource.

According to King, this will be the first selection experiment that studies how variability in diet selects for different responses to diet in the future.

The three fruit fly populations will be derived from a special group of flies, known as the Drosophila Synthetic Population Resource (DSPR), whose complete genetic makeup is known. This will make it possible for King to pinpoint specific genes or genome regions that may change in response to the different dietary histories.

The discoveries made in flies, says King, may shed light on human health.

"Flies are being used as a model for all sorts of human diseases, and things like metabolic pathways have a high level of conservation between humans and flies. We believe some of the information we learn from flies will help guide the direction of study in humans," she says.

###

Media Contact

Jeff Sossamon
[email protected]
573-882-3346
@mizzounews

http://www.missouri.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Five Strategies to Enhance Trust in AI Systems

October 22, 2025

Enhanced Resistance Mapping of CML ABL1 Variants

October 22, 2025

Classical Gravity Theories Predict Quantum Entanglement

October 22, 2025

MSK Unveils Cutting-Edge Research at ESMO 2025: Advances in Lung and Pancreatic Cancer Therapies

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    145 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Five Strategies to Enhance Trust in AI Systems

Enhanced Resistance Mapping of CML ABL1 Variants

Classical Gravity Theories Predict Quantum Entanglement

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.