• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Mixed-signal hardware security thwarts powerful electromagnetic attacks

Bioengineer by Bioengineer
February 19, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Purdue innovators are at Silicon Valley’s premier chip-design conference to unveil technology that is 100 times more resilient to electromagnetic attacks to secure Internet of Things devices

IMAGE

Credit: Shreyas Sen/Purdue University


WEST LAFAYETTE, Ind. – Security of embedded devices is essential in today’s internet-connected world. Security is typically guaranteed mathematically using a small secret key to encrypt the private messages.

When these computationally secure encryption algorithms are implemented on a physical hardware, they leak critical side-channel information in the form of power consumption or electromagnetic radiation. Now, Purdue University innovators have developed technology to kill the problem at the source itself – tackling physical-layer vulnerabilities with physical-layer solutions.

Recent attacks have shown that such side-channel attacks can happen in just a few minutes from a short distance away. Recently, these attacks were used in the counterfeiting of e-cigarette batteries by stealing the secret encryption keys from authentic batteries to gain market share.

“This leakage is inevitable as it is created due to the accelerating and decelerating electrons, which are at the core of today’s digital circuits performing the encryption operations,” said Debayan Das, a Ph.D. student in Purdue’s College of Engineering. “Such attacks are becoming a significant threat to resource-constrained edge devices that use symmetric key encryption with a relatively static secret key like smart cards. Our technology has been shown to be 100 times more resilient to these attacks against Internet of Things devices than current solutions.”

Das is a member of Purdue’s SparcLab team, directed by Shreyas Sen, an assistant professor of electrical and computer engineering. The team developed technology to use mixed-signal circuits to embed the crypto core within a signature attenuation hardware with lower-level metal routing, such that the critical signature is suppressed even before it reaches the higher-level metal layers and the supply pin. Das said this drastically reduces electromagnetic and power information leakage.

“Our technique basically makes an attack impractical in many situations,” Das said. “Our protection mechanism is generic enough that it can be applied to any cryptographic engine to improve side-channel security.”

###

A paper the team prepared in collaboration with Intel Corp. and the Georgia Institute of Technology will be presented this week at the International Solid-States Circuit Conference, the world’s premier integrated circuit design conference.

A short video demonstration of this mixed-signal ASIC is available at https://youtu.be/sh5_SWM7o_U.

The National Science Foundation funded part of the research for the Purdue team.

Sen and his team regularly work with the Purdue Research Foundation Office of Technology Commercialization to patent their technologies. The office recently moved into the Convergence Center for Innovation and Collaboration in Discovery Park District, located on the west side of the Purdue campus.

About Purdue Research Foundation Office of Technology Commercialization

The Purdue Research Foundation Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university’s academic activities through commercializing, licensing and protecting Purdue intellectual property. The office is managed by the Purdue Research Foundation, which received the 2019 Innovation and Economic Prosperity Universities Award for Place from the Association of Public and Land-grant Universities. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University. Visit the Office of Technology Commercialization for more information or contact [email protected].

Writer: Chris Adam, 765-588-3341, [email protected]

Sources: Shreyas Sen, [email protected]

Debayan Das, [email protected]

Paper: 27.3: EM and Power SCA-Resilient AES-256 in 65nm CMOS Through >350× Current-Domain Signature Attenuation

Media Contact
Chris Adam
[email protected]

Tags: Computer ScienceElectrical Engineering/ElectronicsInternetTechnology TransferTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Gender Variations in Health-Related Quality of Life

August 27, 2025

Comparing Tactile and Auditory Relief for Preterm Pain

August 27, 2025

Nutritional Risk Scores Predict Digestive Tumor Outcomes

August 27, 2025

Global Virus Network Unveils 2025 Rising Star Mentorship Program Awardees

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gender Variations in Health-Related Quality of Life

Comparing Tactile and Auditory Relief for Preterm Pain

Nutritional Risk Scores Predict Digestive Tumor Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.