• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mitochondria-targeted antioxidant SkQ1 helps to treat diabetic wounds

Bioengineer by Bioengineer
June 29, 2017
in Health
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Members of the Faculty of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University, have tested on a mouse model a mitochondria-targeted antioxidant, helping to treat diabetic wounds. The scientists have presented the results in the paper accepted for publication in the Oxidative Medicine and Cellular Longevity journal.

Wound healing is usually compromised in diabetes mellitus type II. The patients suffer from skin damages on their foot – so called diabetic foot ulcer. These wounds are hard-to-treat and they may become chronic. At the moment there are no efficient drugs against diabetic wounds. Frequently the only treatment option is a surgical procedure. However, even this doesn't always help. It's also known that diabetes is accompanied by significant oxidative stress, affecting the vessels of the people, suffering from this disease. It's also assumed that vessel dysfunction in diabetes, namely diabetic angiopathy, is one of the main reasons of delayed wound healing.

Dr. Roman Zinovkin, a Senior Researcher at the A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University and one of the article coauthors reported: "In the current project we've tested the mitochondria-targeted antioxidant SkQ1 on a mouse model of diabetes mellitus type II. We've found out that SkQ1 has significantly enhanced wound healing in these animals, namely, improved wound epithelization and granulation tissue formation. Besides that – what is highly important for diabetic wound healing – it stimulated vascularization thus restoring disturbed blood circulation. The experiments on cell cultures, along with detailed histologic examination of these wounds have shown that SkQ1 improves nearly all the major steps of wound healing. It proves that reactive oxygen species produced in mitochondria play an important role in pathogenesis of diabetic wounds."

The scientists have used a wide range of methods in their project: molecular biological techniques, biochemical, immunological and histologic approaches.

The scientist concludes: "The current project is both scientifically and practically promising. It's very important to investigate the exact role of mitochondria and mitochondrial reactive oxygen species in all cell types responsible for diabetic wound healing. Practically, the obtained results could be used for creation of an effective pharmaceutical drug for diabetic wound healing. This drug could be both in an oral from for systemic use and as a dermal wound dressing gel. We assume that the obtained results together with the data, proving safety of local use of SkQ1, may help to create an innovative pharmaceutical drug – namely, a wound healing gel based on SkQ1 for diabetic wound treatment.

###

Media Contact

Yana Khlyustova
[email protected]

http://www.msu.ru

https://www.hindawi.com/journals/omcl/aip/6408278/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Ferroptosis in Diabetes: Insights from Research

November 6, 2025

Berberine boosts CYP3A4 expression through PXR activation

November 6, 2025

Novel Rhodanine–Sulfonate Compounds Inhibit Aldose Reductase

November 6, 2025

Ginsenoside Rg1 Enhances Intervertebral Disc Repair Mechanism

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferroptosis in Diabetes: Insights from Research

Berberine boosts CYP3A4 expression through PXR activation

Novel Rhodanine–Sulfonate Compounds Inhibit Aldose Reductase

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.