• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

MIT undertakes grand challenge for innovation in global vaccine manufacturing

Bioengineer by Bioengineer
February 22, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Samara Vise

Vaccines are among the most transformative and successful outcomes of modern medicine. For countries fortunate enough to have immunization coverage, their value can also lower or avert healthcare costs, increase economic productivity, and reduce poverty. The cost of producing and distributing vaccines to lower income countries still limits their availability to much of the world's population, however.

Despite recent improvements in global vaccine coverage, the World Health Organization (WHO) estimates that 21.8 million infants worldwide did not receive complete basic immunizations in 2013. Further, of the 5.2 million deaths annually among children under the age of five, nearly one-third are preventable by vaccines. Incomplete vaccine coverage results from a number of factors, including limited resources, poor health system management, competing health priorities, and inadequate monitoring. Beyond these factors, procuring manufactured vaccines at suitable costs is an essential requirement. A substantial reduction in the cost to manufacture vaccines could help promote affordable, equitable, and sustainable immunization on a global scale, while also enabling manufacturers to develop sustainable business models around such products.

To address this manufacturing challenge, the Bill & Melinda Gates Foundation has awarded a $17.6 million Grand Challenge grant to the Massachusetts Institute of Technology (MIT), University College London (UCL) and Kansas University (KU) to pursue an innovative research project for global health to create a next-generation manufacturing platform to produce certain vaccines for less than 15 cents a dose. The project entitled "Ultra-low cost, Transferable Automated (ULTRA) Platform for Vaccine Manufacture," aims to standardize the manufacturing development and production of new protein-based vaccines at globally affordable costs.

Challenge accepted

ULTRA seeks to reduce facility-related costs by combining a small physical footprint with reduced operational costs enabled by an integrated automation of the manufacturing process, to minimize labor costs and failure rates. At the heart of this endeavor is a strategic focus on recombinant protein vaccines, which rely on purified elements of a bacteria or virus to elicit immunologic protection. The manufacturing platform will accommodate chemistry, manufacturing and control (CMC) development for a diverse range of components for recombinant vaccines that target diseases like Hepatitis B, HIV, HPV (an extensible risk for cervical cancer), malaria, rotavirus and future vaccine candidates. The integrated production platform aims to produce and purify these proteins using a combination of engineered microbial cell factories and flexible approaches for purification to accommodate different vaccines and future candidates. Such manufacturing models currently exist for some biopharmaceuticals like antibody-based therapies Today, however, solutions to manufacturing are unique for each vaccine.

"In the same ways that industry today enjoys platform manufacturing for monoclonal antibodies, we envision a new platform for current and future recombinant vaccines," said J. Christopher Love, an MIT associate professor of chemical engineering, a member of the Koch Institute for Integrative Cancer Research and lead investigator for the MIT team. "ULTRA should ultimately empower both a broad discovery portfolio and streamlined commercial development."

Strength in numbers

The collaboration among the academic institutions will highlight each of their strengths and expertise to develop the exciting and innovative platform. The Love laboratory, for example, brings a wide range of experience in platform-based technology development, including on-going work under the DARPA-funded Bio-MOD program, which aims to enable systems for manufacturing on-demand. They are joined in the ULTRA effort by MIT professors Richard Braatz, the Edward R. Gilliland Professor in the Department of Chemical Engineering, and Kripa Varanasi, Associate Professor in the Department of Mechanical Engineering. Additional academic partners on the ULTRA program include Dr. Tarit K. Mukhopadhyay and professors Suzanne Farid and Daniel G. Bracewell from UCL and Kansas University professor David B. Volkin and Dr. Sangeeta Joshi.

The three partner academic institutions will work in tandem to develop the vaccine strains, integrated manufacturing process, and economic models to ensure that ULTRA can achieve costs of less than 15 cents a dose. If successful, this method will be tested at scale by an industrial partner who will generate clinical-grade material for a Phase 1 trial at the end of this five-year grant.

"It's an honor to take on this important challenge with the support of this team of world-class academics," said Love. "Together, we are committed to the global access of a powerful new approach for manufacturing low-cost vaccines."

###

Learn more about the Grand Challenges Initiatives, Projects and Grantees at gcgh.grandchallenges.org.

Media Contact

Michael Patrick Rutter
[email protected]
617-715-2400
@MIT

http://web.mit.edu/newsoffice

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Maternal Heart Health Shapes Child Brain Development Early

September 19, 2025

Novel Nanoparticle System Boosts Cancer Treatment Efficacy

September 19, 2025

Risk-Based Approaches to Kidney Health in Diabetes

September 19, 2025

Day-2 Heart Imaging and Biomarkers in HIE Neonates

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal Heart Health Shapes Child Brain Development Early

Novel Nanoparticle System Boosts Cancer Treatment Efficacy

Risk-Based Approaches to Kidney Health in Diabetes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.