• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

MIT is bioengineering bacteria to turn CO2 into fuel

Bioengineer by Bioengineer
August 22, 2012
in NEWS
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The unmodified version of Ralstonia eutropha feeds on organic compounds or hydrogen and grows in the process. But when it gets stressed through a lack of certain nutrients in its diet it decides to store food for later instead. That food is stored as a polymer.

What the scientists at MIT did was to modify the bacteria so that instead of storing food as a polymer, it produces isobutanol. Isobutanol can be used as a substitute for gasoline making the usefulness of this bacteria very clear.

However, the research team aren’t finished yet. Its food source is carbon-based and work is currently underway to get it on to a diet of carbon dioxide. By doing so, Raistonia eutropha could one day eat our carbon emissions and output new fuel for us to use.

The isobutanol produced is easy to filter off as the bacteria stores it in the liquid surrounding of its body rather than internally. With that being the case, having large vats of Ralstonia eutropha producing a steady stream of fuel is highly viable. It’s also possible the bacteria could be adapted to use some of our other waste products as a food source, for example, agricultural waste.

As the whole system relies on this single bacteria it can be setup just about anywhere there’s access to a food source and a fuel storage system. That means it won’t take up valuable farming land like ethanol production does, making it a much more viable and eco-friendly long term solution if the MIT team can perfect Ralstonia eutropha’s eating habits.

Share12Tweet8Share2ShareShareShare2

Related Posts

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

September 12, 2025
blank

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

September 12, 2025

Gene Body Methylation Drives Diversity in Arabidopsis

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

Evaluating Energy Digestibility in Quail Feed Ingredients

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.