• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Missing molecule hobbles cell movement

Bioengineer by Bioengineer
May 3, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cell motility is essential to proper development and to cancer metastasis; now researchers propose a target to control it

Cells missing a certain protein on their surface can’t move normally, UConn researchers report in Science Signaling. The research could give insight into how cells move and repair wounds in normal tissue, as well as how cancer spreads through the body.

Cells are the body’s workers, and they often need to move around to do their jobs. Frequently, a cell will move through a tissue – say, the wall of a blood vessel – the way a rock climber scales a cliff, using a protein called integrin to grab onto a spot and pull itself in that direction. When the cell moves forward, it releases the integrin grip at its rear and brings it inside itself for recycling to the front, where it is then reused to make a new grip and move forward.

This type of movement is important when cancers metastasize, breaking away from the primary tumor and spreading through the rest of the body. Cancer cells need to crawl through a tissue using integrin until they reach a blood vessel they can use to travel long distances. Disabling the integrin mode of transport might be one method of preventing cancer from spreading.

UConn Health vascular biologists Mallika Ghosh and Linda Shapiro wondered how a common protein found in a cell’s skin, called the cell membrane, affected this type of movement. The protein, called CD13, spikes through the cell’s membrane, with one end interacting with the inside of the cell and the other with the outside world. CD13 has many different functions, including binding a cell in place and helping cells communicate with each other.

To test CD13’s role in cellular movement, Ghosh, Shapiro, and their colleagues first looked at mouse fibroblasts, a type of cell that makes the scaffolding that holds tissues and organs together. They added the fibroblasts to petri dishes filled with fibronectin, a material found outside of the cell that integrin grasps. Integrin, remember, is the protein that cells use to grab on and drag themselves through a tissue. Some of the fibroblasts were normal; others had had the gene for CD13 knocked out.

The researchers found that normal fibroblasts could move through the petri dish using their integrin method with no trouble, but CD13 knock-out fibroblasts couldn’t move at all.

Then they stained the cell nucleus blue and the integrin on the cell surface green, and watched to see what happened. The normal fibroblasts pulled all their integrin inside, and after about two hours for recycling, it reappeared on the surface. The CD13 knock-out fibroblasts also pulled all their integrin inside after two hours, but the integrin never reappeared.

They tried the same experiment with human cervical cancer cells and got the same result. What appeared to be happening is that CD13 acts as an organizer, gathering the freshly recycled integrin and other necessary proteins at the cell membrane so it’s ready to be pushed out when the cell needs to move.

“Without CD13, the integrins go inside and don’t come back out,” Shapiro says. The details of how CD13 gathers the integrin in the right place involves assembly of the cell’s recycling machinery by the part of CD13 that extends inside of the cell in response to signals detected by the segment of CD13 that protrudes outside.

“And all these steps are critical for the cells to process information from the outside environment and move forward,” Ghosh says.

The researchers are now looking at different versions of integrin proteins and various binding materials such as collagen and laminin, to see if CD13 plays the same role in cell movement in tissues that use those proteins for structure.

###

Media Contact
Kim Krieger
[email protected]
http://dx.doi.org/10.1126/scisignal.aav5938

Tags: BiologyBiomechanics/BiophysicscancerCell BiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.