• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mining microbial treasures from toxic sites

Bioengineer by Bioengineer
May 8, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Filled with a noxious brew of copper, cadmium and arsenic, with a pH rivaling that of sulfuric acid, Montana’s Berkeley Pit seems inhospitable to life. Nonetheless, scientists have discovered microorganisms in this abandoned copper mine and other human-made noxious sites. These extreme environments induce microbes to synthesize potent, never-before-seen molecules that could find uses in human medicine, according to an article in Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society.

Recently, scientists have begun exploring places like old copper mines and smoldering coal seams for signs of life. They suspect that some of the unusual molecules that microbes make to stay alive under such hostile conditions could help humans survive maladies such as cancer or antibiotic-resistant bacterial infections. However, researchers face substantial challenges in growing these microorganisms in the lab and isolating potentially useful compounds, which are just the first of many steps to move drugs into the clinic, freelance contributor Carrie Arnold writes.

Replicating in the lab the extreme environments in which these microbes thrive can be challenging or impossible. However, researchers Andrea and Don Stierle at the University of Montana cultured fungi from the Berkeley Pit in a nutrient broth spiked with pit water. The Stierles have since extracted and purified several new molecules from the fungi that show anti-cancer and antibiotic activities in vitro. Because many such extremophiles can’t be grown in the lab, some researchers have turned to a technique called metagenomics, which involves sequencing microbial DNA directly from environmental samples and then predicting classes of molecules the microbes might be making. Although no compounds identified from noxious environments have yet made it into the clinic, experts predict that it’s only a matter of time before these manmade disasters yield lifesaving medicines.

###

The article, “Scientists mine for potential drugs in the Berkeley Pit and other industrial sites,” is freely available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
https://cen.acs.org/biological-chemistry/natural-products/Scientists-mine-potential-drugs-Berkeley/97/i18

Tags: BiochemistryBiodiversityChemistry/Physics/Materials SciencesMicrobiologyPharmaceutical SciencePharmaceutical Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

New Inhibitor Targets Glioma Progression Effectively

New Inhibitor Targets Glioma Progression Effectively

August 24, 2025
Real-World Study: Efficacy of Loxenatide Plus Insulin

Real-World Study: Efficacy of Loxenatide Plus Insulin

August 24, 2025

Link Between hs-CRP/HDL-C Ratio and Diabetes Risk

August 24, 2025

Revolutionizing Drug Interaction Prediction with Graph Networks

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    120 shares
    Share 48 Tweet 30
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Inhibitor Targets Glioma Progression Effectively

Influence of Diet and Rumen Source on Fermentation

Early Dinosaur Skull Lesions Suggest Aggressive Behavior

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.