• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Minimally-invasive hydrogen therapy of cancer based on in-vivo electrochemistry

Bioengineer by Bioengineer
February 7, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press


Up to now, cancer is still one of the major diseases that threaten the survival of mankind, and it is difficult to cure clinically. In addition to single or combined surgery, chemotherapy and radiotherapy, which are commonly used clinically, a number of promising therapeutic strategies have been recently put forward including immunotherapy and gene therapy, photothermal therapy (PTT), photodynamic therapy, and so on. However, these techniques usually rely on chemical and genetic drugs or exotic nanomaterials to actualize treatments, making them quite difficult or debatable for practical clinical applications in near future due to the uncertainties of potential biotoxicity and biohazards, and related genetic and ethical issues; and immunotherapy and gene therapy are complex and expensive. Therefore, the popularization of these techniques in clinical practice is restricted. Consequently, developing simple, green, efficient and cheap treatment method is an urgent need to combat cancer.

Hydrogen, owing to its small molecular size and physiological inertness, resistance to oxidation, and good gas diffusivity in-vivo, is considered as a kind of green and endogenous gas. It performs the eminent physiological/pathological regulation functions, which is widely used for the treatment many diseases, such as, Alzheimer’s disease, arthritis, diabetes and especially cancer. As early as 1975, researchers have applied the antioxidation of H2 to treat skin squamous cell carcinoma, but it requires using diving medical equipment to provide high pressure H2 which is restricted for clinic tumor therapy applications, how to produce H2 non-invasively and sufficiently without using nanomaterials and how to realize H2 releasing on demand in vivo are two huge challenges facing for the H2 therapy of cancers.

Acupuncture is a traditional and unique minimally-invasive method to treat diseases in China. It is quite effective to treat systemic diseases, especially for arthritis, cervical spondylopathy, psoatic strain and so on. But applying it to the treatment of major diseases, such as cancers is still a great challenge.

In a new research article published in the Beijing-based National Science Review, scientists at the State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China, and at School of Public Health, Jilin University, Changchun, China present the latest advances a green, efficient and precise hydrogen therapy of cancer based on in-vivo electrochemistry. Co-authors Guo-Hua Qi, Bo Wang, Xiangfu Song, Haijuan Li and Yong-dong Jin report the hydrogen cancer therapy in vivo with electrochemical. They have summarized the development of hydrogen in the treatment of cancer and the key problems limiting its development of clinical application.

These scientists have developed a simple and precise cancer therapy approach based on selective electrochemical generation of H2 in tumor region, termed in-vivo H2 generation electrochemotherapy (H2-ECT) by innovative combined use of traditional Chinese acupuncture Fe needle (electrode) and in-vivo electrochemistry. The H2-ECT method enables large-scale tumor therapy by applying gas diffusion effect, avoiding the shortcoming of limited effective area for classic electrochemical reactions. Moreover, due to the puncture positioning and acidic tumor microenvironment (compared to normal tissue), the method provides ideal selectivity and targeting to precisely kill tumors with minimal damage to normal tissue, which is very promising for potential clinic applications. The effectiveness of the method has been demonstrated by successful and fast treatment of glioma and breast cancers in mice in this study. The cost of cancer therapy is very low and less than 1 $ for each treatment.

Scientifically, a green and conceptually new in-vivo H2 generation electrochemotherapy (H2-ECT) of tumor has been developed. Prof. Yongdong Jin said that in a broader perspective, the H2-ECT provides a reliable method for the treatment of cancer and solves the heavy economic burden of cancer therapy bring to the family by high cost, so that it is easily popularized in poor country.

###

This research was supported by the National Key Research and Development Program of China, the National Natural Science Foundation of China, and the Instrument Developing Project of the Chinese Academy of Sciences.

See the article:

Guohua Qi, Bo Wang, Xiangfu Song, Haijuan Li and Yongdong Jin

A green, efficient and precise hydrogen therapy of cancer based on in-vivo electrochemistry

Natl Sci Rev, doi: 10.1093/nsr/nwz199

https://doi.org/10.1093/nsr/nwz199

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Yongdong Jin
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz199

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exercise’s Impact on SASP Biomarkers in Seniors Unexplored

UK’s Rising Synthetic Opioid Crisis: Nitazene-Linked Deaths May Be Underreported by Up to 33%

Mapping NYC Foot Traffic: Insights for Urban Planning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.