• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Miniature magnetic swimming devices to revolutionise diagnostics and drug delivery

Bioengineer by Bioengineer
October 2, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have created miniature magnetic swimming devices – which mimic the appearance of sperm cells – that could revolutionise disease treatment by swimming drugs to specific areas of the body.

The devices, which measure as small as one millimetre long, consist of a magnetic head and flexible tail that allows them to 'swim' to a specific location when activated by a magnetic field.

Researchers at the University of Exeter, who designed the devices and magnetic control mechanism, have also created a mathematical model that allows them to predict their behaviour in different environment, such as microfluidic channels or complex liquids.

The researchers believe that the devices could be used to deliver drugs to specific areas of the body, and so dramatically improving treatment time and success.

They also believe that the devices could revolutionise the wider field of microfluidics, which focuses on moving liquids through extremely narrow channels.

Their research is currently focused on implementing microscopic prototypes and the researchers have already successfully demonstrated swimmers comparable to the size of red blood cells.

The research is published in the Physics of Fluids journal.

Professor Feodor Ogrin, principal investigator at the University of Exeter said: "Developing this technology could radically change the way we do medicine. The swimmers could one day be used to direct drugs to the right areas of the body by swimming through blood vessels.

"We also envisage microscopic versions of the device being used on 'lab-on-a-chip' technology, where complex procedures normally conducted in a laboratory, such as diagnosing disease, are conducted on a simple chip. This would drastically reduce the time taken before treatments can be implemented, potentially saving lives."

Similar devices have previously been made using more complex and expensive techniques. This is the first swimmer that could be made on an industrial scale, thus paving a way for making cheap and disposable microfluidic chips.

Professor Ogrin added: "In future, diagnosing many diseases before getting treatment could be as simple as putting a drop of blood on a chip in a doctor's office. This is especially useful for diseases like sepsis, where symptoms progress from mild to life-threatening before such tests can be conducted".

By modifying the length of the tail and the strength of the magnetic field applied the researchers were able to find the optimum length for speed, and controllability – allowing them to cause the device to move in the direction of, or perpendicular to the magnetic field.

Microfluidics very often relies on using high-pressure pumps to move liquids, as they become extremely viscous in such small channels. The researchers demonstrate that the swimming device can be easily modified to act as a pump, stirrer or a valve in such technology. This could revolutionise the field, providing a simple and efficient way of manipulating liquids at a microscale.

###

The research was funded by the European Union's Horizon 2020 research and innovation programme (grant no. 665440, project ABIOMATER). The full list of authors is as follows: Joshua K. Hamilton, Andrew D. Gilbert, Peter. G. Petrov and Feodor Y. Ogrin, all at the University of Exeter.

Media Contact

Duncan Sandes
[email protected]
44-013-927-22391
@uniofexeter

http://www.exeter.ac.uk

http://dx.doi.org/10.1063/1.5046360

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Asthma Treatments: Fluticasone vs. Beclometasone

November 2, 2025

School Nurses’ Impact on Pediatric Obesity in Saudi Arabia

November 2, 2025

Unraveling SLAMF8’s Role in Prostate Cancer Metastasis

November 2, 2025

Biologic Treatments: Adherence Insights for Palmoplantar Pustulosis

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Asthma Treatments: Fluticasone vs. Beclometasone

School Nurses’ Impact on Pediatric Obesity in Saudi Arabia

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.