• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mini-intestine grown in a test tube for nutritional research

Bioengineer by Bioengineer
February 10, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

This news release is available in German.

Research efforts on the intestine have increased in recent years. Owing to its enormous surface area – comparable to that of a one-bedroom apartment – and the huge number of neurons it contains – comparable to that in the brain – the intestine is sometimes referred to as the abdominal brain. In addition to absorbing nutrients from the foods we eat, it influences our immune status and metabolism. With the help of sensors, specialized cells in the intestinal wall determine which hormones, if any, should be released into the bloodstream. Overall, it acts as a highly sophisticated control center.

How an organoid grows from cells

Among their many functions, intestinal hormones, known as incretins, control blood glucose levels, appetite and fat metabolism. Diabetics and obese individuals have already been successfully treated with drugs based on the mechanisms of action of these hormones. However, still too little is known about the precise mechanism behind incretin release.

Applying a new method that is used mainly in stem-cell research and regenerative medicine, researchers from the Technical University of Munich have now devised a robust intestinal model for molecular research into incretin release in a test tube (in vitro). To do so, they first isolate small pieces of intestine containing stem cells – in this case from mice. In the next step, a nutrient solution in a test tube stimulates the stem cells to develop into an organ-like structure. In just a few days, a spherical organoid forms that measures just a quarter of a millimeter across and is suitable for use in research.

Mini-intestine functions like normal intestinal tissue

"The special thing about our scientific work on the intestinal organoid is that we can observe its inner workings," explains Dr. Tamara Zietek of the Department of Nutrition Physiology. "The mini-intestines exhibit all the essential functions of a real intestine," the TUM scientist adds.

The intestinal organoid can:

  • actively absorb nutrients and drugs
  • release hormones after activation by nutrients
  • transmit signals within the intestinal cells to control these processes.

"Until now, it was not possible to investigate these processes in a single model, because conventional models are unsuitable for all these measurements," says Zietek, the corresponding author of the article that appeared in Scientific Reports of the Nature Publishing Group. In addition, once mini-intestines have been grown, researchers can work with them for months, because they can be replicated in the laboratory. "This drastically reduces the number of experimental animals needed," says the scientist.

Interdisciplinary collaboration

Zietek developed the method in collaboration with Dr. Eva Rath of the Department of Nutrition and Immunology. Working on an interdisciplinary basis, the two scientists have combined organoid cultivation with molecular nutritional research. They are now demonstrating that the mini-intestine is an ideal model for investigating hormone release and transport mechanisms in the digestive tract. "This is a huge advance for gastroenterological basic research as well as biomedical sciences and pharmacology," Zietek believes. The next step will be to work with mini-intestines grown from human intestinal biopsy material. "We're already in contact with a hospital that can provide the required research material."

In view of the growing number of diabetics and obese individuals, this method can help nutritional researchers develop new forms of treatment.

###

Share12Tweet7Share2ShareShareShare1

Related Posts

Estrogen Influences Reward Learning and Prediction Errors

November 11, 2025

G9a Deficiency Boosts TMEM27, Ferroptosis, Radiosensitivity

November 11, 2025

Wild-Type KRAS Fuels Immune Evasion in Liver Cancer

November 11, 2025

NIH-Funded Johns Hopkins Study Reveals Mild Pancreatic Duct Dilatation Elevates Pancreatic Cancer Risk in High-Risk Individuals

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estrogen Influences Reward Learning and Prediction Errors

Boosting Tandem Perovskite LEDs via Photon Recycling

G9a Deficiency Boosts TMEM27, Ferroptosis, Radiosensitivity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.