• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Microwave-assisted recording technology promises high-density hard disk performance

Bioengineer by Bioengineer
March 9, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Flux control effect in microwave-assisted magnetic recording exploited to improve the recording field in hard disks

IMAGE

Credit: Hirofumi Suto

WASHINGTON, March 9, 2021 — Researchers at Toshiba Corporation in Japan have studied the operation of a small device fabricated in the write gap of a hard disk drive’s write head to extend its recording density. The device, developed by HWY Technologies, is based on a design concept known as microwave-assisted magnetic recording, or MAMR.

This technology, reported in the Journal of Applied Physics, by AIP Publishing, uses a microwave field generator known as a spin-torque oscillator. The spin-torque oscillator emits a microwave field causing the magnetic particles of the recording medium to wobble the way a spinning top does. This makes them much easier to flip over when the write head applies a recording magnetic field in the writing process.

In a computer’s hard drive, each bit of data is stored in magnetic particles known as grains. The magnetic orientation of the grains determines whether the bit is a 0 or a 1.

Making the grains smaller allows them to be packed together more tightly. This increases the storage capacity, but it also makes the data bits unstable. The development of MAMR allows more stable magnetic materials to be used but also limits the type of recording media that can be developed.

The investigators focused on another effect known as the flux control (FC) effect, which also occurs in MAMR. This effect improves the recording field and is maximized when the magnetization of the spin torque oscillator is completely reversed against the gap field.

The advantage of the FC effect is that improvement is obtained in any magnetic recording, according to author Hirofumi Suto. This is significant, since it would no longer be necessary to use recording media specially designed for the MAMR technology.

The FC device, a type of spin-torque oscillator designed to maximize the FC effect, consists of two magnetic layers fabricated directly in the write gap of the write head. A bias current supplied to the device reverses the magnetization of one of the layers through an effect known as spin-transfer torque.

The investigators experimented with different bias currents and found the reversal of magnetization occurred more quickly at higher currents. Upon comparing their experiments to a computational model, they also determined the recording field was enhanced by the FC effect, improving the writability of the write head and exceeding the performance of conventional write heads.

The FC device operates effectively at a fast write rate of approximately 3 gigabits per second, according to Suto. These results provide evidence that the FC device operates as designed and show that FC-MAMR is a promising technology for extending the areal density of hard disk drives.

Toshiba plans to introduce hard disk drives using MAMR technology that will increase hard disk capacity to 16-18 terabytes.

###

The article “Magnetization dynamics of a flux control device fabricated in the write gap of a hard-disk-drive write head for high-density recording” is authored by Hirofumi Suto, Masayuki Takagishi, Naoyuki Narita, Hitoshi Iwasaki, Tazumi Nagasawa, Gaku Koizumi, Akihiko Takeo, and Tomoyuki Maeda. The article will appear in The Journal of Applied Physics on Mar. 9, 2021 (DOI: 10.1063/5.0041561). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0041561.

ABOUT THE JOURNAL

The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results in all areas of applied physics. See https://aip.scitation.org/journal/jap.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0041561

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsHardwareTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    67 shares
    Share 27 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Hemagglutinin Changes Affect H5N1 Virus Fitness

New Maps Indicate India May Face the Greatest Impact from Chikungunya

Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.