• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Microscopic submarines for your stomach

Bioengineer by Bioengineer
January 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tiny "submarines" that speed independently through the stomach, use gastric acid for fuel (while rapidly neutralizing it), and release their cargo precisely at the desired pH: Though it may sound like science fiction, this is a new method for treating stomach diseases with acid-sensitive drugs introduced by scientists in the journal Angewandte Chemie. The technique is based on proton-driven micromotors with a pH-dependent polymer coating that can be loaded with drugs.

Though our gastric acid is useful for digestion and protection from pathogens, it can be destructive to orally administered, pH-sensitive pharmaceuticals, including protein-based drugs or some antibiotics. A coating resistant to gastric juices is sufficient to protect substances intended to work in the intestines. However, if a drug needs to be activated in the stomach, for instance to treat stomach ulcers or Helicobacter pylori bacteria infection, it is usually combined with proton pump inhibitors to block production of acid. When used over longer periods, these can cause some side effects in patients, including headaches, diarrhea, fatigue, and in some severe cases, anxiety, depression, or rhabdomyolysis (a muscle disease).

With their micromotors, a team led by Liangfang Zhang and Joseph Wang at the University of California, San Diego (La Jolla, USA) has introduced a novel approach for the neutralization of gastric acid that avoids side-effects and simultaneously acts as a drug transport mechanism that releases its cargo only when the required pH is reached.

To make the motors, 20 μm magnesium spheres are coated with a nanolayer of gold and then a pH sensitive polymer into which the drug is embedded. Because the spheres lie on a glass support during the coating process, a small spot on the magnesium core remains uncoated. At this spot, an electrochemical reaction occurs, consuming protons and forming magnesium ions and releasing tiny bubbles of hydrogen gas. The bubbles propel the motors. This motion results in effective mixing of the liquid. This causes the reaction to proceed rapidly. Less than 20 minutes after administering the motors, the stomach environment reaches a neutral pH value. Once this is reached, the polymer dissolves and releases the payload. In addition, the propulsion increases penetration of the microtransporter into the gastric mucosa, which increases the amount of time that the drug is retained in the stomach. The micromotors are biocompatible and safe to use in the stomach. Stomach function is not affected and the normal pH value is re-established within 24 hours.

###

About the Author

Dr. Joseph Wang is a Distinguished Professor and SAIC Endowed Chair, Chair of the Nanoengineering Department and Director of the Center for Wearable Sensors at UC San Diego. He is a leading expert on nanomotors and nanomachines, wearable bioelectronic devices, and electrochemical biosensors.

http://joewang.ucsd.edu/

Media Contact

Mario Mueller
[email protected]

http://www.wiley.com/wiley-blackwell

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.