• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, February 3, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Microplastic pollution increases sea foam height and stability

by
July 16, 2024
in Chemistry
Reading Time: 3 mins read
0
A wave channel experiment used a zoom lens camera and a custom Python script
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, July 16, 2024 — From cloud formation to sea temperatures, sea foam plays many roles in the dynamic interactions that occur at the surface level of the world’s oceans.

A wave channel experiment used a zoom lens camera and a custom Python script

Credit: Jotam Bergfreund

WASHINGTON, July 16, 2024 — From cloud formation to sea temperatures, sea foam plays many roles in the dynamic interactions that occur at the surface level of the world’s oceans.

In an article published this week in Physics of Fluids, by AIP Publishing, researchers from ETH Zürich and The Ocean Cleanup, based in New Zealand, examined the specific impacts of microplastics on the geophysics of sea foam formation in the critical zone where water meets air in the top layer of the ocean.

“The surface microlayer is the first area of contact between the atmosphere and a water body, lake, or ocean,” author Peter Fischer said. “All exchanges of materials, whether gases, water, or particles, pass through the surface microlayer before they are distributed deeper into the water column or upper layers of the atmosphere through evaporation and cloud formation.”

Fischer and his colleagues devised two simulations for their work: a column filled with sea water injected with air and a laboratory-scale breaking wave channel to test the impacts of wave height on sea foam in the surface microlayer. Using microplastics collected from the North Pacific by The Ocean Cleanup, along with naturally occurring compounds, they tested their effects on sea foam formation, stability, and duration. 

The team closely examined the interplay between air, water, and suspended materials that affect the water surface tension, including microplastics and naturally occurring surface active materials. They found that the addition of microplastics increased the height and stability of sea foam, particularly when part of smaller breaking waves.

“Surface active materials such as plankton, proteins, and other byproducts of marine life already influence sea foam formation even without human input,” Fischer said. “Microplastic pollution adds a notable, but smaller, contribution to the formation of sea foam and actually leads to some positive effects like reflecting more UV light.”

Sea foam has several positive effects on the ocean and climate, so more of it might be one of the few positives stemming from microplastic pollution in our oceans. Sea foam drives an exchange of air and water at the ocean’s surface, resulting in more cloud formation and more oxygen in the water. The brighter foam also reflects sunlight, potentially lowering ocean temperature.

In future studies, the team is planning to refine the experiments to more closely mimic natural conditions and explore the effects of biofilms and photochemical degradation.

###

The article “Impact of microplastic pollution on breaking waves” is authored by Jotam Bergfreund, Ciatta Wobill, Frederic M. Evers, Benjamin Hohermuth, Pascal Bertsch, Laurent Lebreton, Erich J. Windhab, and Peter Fischer. It will appear in Physics of Fluids on July 16, 2024 (DOI: 10.1063/5.0208507). After that date, it can be accessed at https://doi.org/10.1063/5.0208507.   

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://pubs.aip.org/aip/pof.

###



Journal

Physics of Fluids

DOI

10.1063/5.0208507

Article Title

Impact of microplastic pollution on breaking waves

Article Publication Date

16-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Theoretical Insights into Cluster Radioactivity Under Intense Laser Fields

Theoretical Insights into Cluster Radioactivity Under Intense Laser Fields

February 3, 2026
Breakthrough in Highly Selective Asymmetric 1,6-Addition of Aliphatic Grignard Reagents to Unsaturated Carbonyl Compounds

Breakthrough in Highly Selective Asymmetric 1,6-Addition of Aliphatic Grignard Reagents to Unsaturated Carbonyl Compounds

February 2, 2026

Enhancing Efficiency in Robotic Joint Design

February 2, 2026

The Hidden Chemistry of Ozone: Unlocking the Secrets Behind Clean Air

February 2, 2026

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • Robotic Ureteral Reconstruction: A Novel Approach

    81 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Intracortical Microstimulation Leads to Surprising Partial Restoration of Natural Vision in Blind Patient

Magneto-Mechanical Forces Reprogram Macrophages for Tumor Immunity

From Ocean to Earth: Molecular Insights Reveal Algae’s Evolution into Plants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.