• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Microchannel-containing nanofiber aerogels with small protein molecule enable accelerated diabetic wound healing

Bioengineer by Bioengineer
November 22, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(LOS ANGELES) – November 22, 2022 – A collaborative team of scientists from the Terasaki Institute for Biomedical Innovation and the University of Nebraska Medical Center has developed a fibrous aerogel that promotes faster and more effective healing of diabetic wounds. As detailed in their publication in Advanced Functional Materials, the micro/macrochannels engineered within the aerogel facilitate the ability to heal chronic diabetic wounds, while a novel protein incorporated into the aerogel provides anti-microbial capabilities and promotes wound tissue coverage and new blood vessel formation.

Microchannel-Containing Nanofiber Aerogels with Small Protein Molecule Enable Accelerated Diabetic Wound Healing

Credit: Terasaki Institute for Biomedical Innovation (TIBI)

(LOS ANGELES) – November 22, 2022 – A collaborative team of scientists from the Terasaki Institute for Biomedical Innovation and the University of Nebraska Medical Center has developed a fibrous aerogel that promotes faster and more effective healing of diabetic wounds. As detailed in their publication in Advanced Functional Materials, the micro/macrochannels engineered within the aerogel facilitate the ability to heal chronic diabetic wounds, while a novel protein incorporated into the aerogel provides anti-microbial capabilities and promotes wound tissue coverage and new blood vessel formation.

In general, diabetic foot ulcers (DFUs) are challenging to manage. Numerous patients with DFUs must undergo amputations each year, which significantly impacts their quality of life. In the United States alone, costs for the treatment of non-diabetic foot ulcers are estimated at $1.38 billion annually. Impaired healing and poor clinical outcomes are associated with DFUs due to underlying problems with blood circulation, nerve damage, immune function, and fibrosis. DFUs that do not heal also have a lower chance of recovery after surgery.

Certain types of cells and molecules must migrate to the wound site during routine wound healing; these cells initiate blood vessel formation and tissue regeneration, which are required for rapid wound repair and closure.

Microarchitecture of dressings is crucial in sustaining the wound structure by allowing cells to migrate through the dressings to close the wound. The UNMC/TIBI team engineered nanofibrous aerogels containing organized microstructure that facilitated cell migration, oxygen, and nutrient delivery to the wound bed.

Moreover, preventing infection is also crucial in the rapid healing of DFUs. The team has incorporated a novel anti-microbial peptide into the dressing to prevent bacterial growth and promote healing. The advantage of this novel peptide is its low-cost and potency compared to commercially available anti-microbial agents.

Using a Type 2 diabetic wound mouse model, the team demonstrated that their novel dressing healed DFUs in 2 weeks which was significantly faster than previous dressings.

“The combined properties of our nanofiber aerogel work synergistically to produce a superior treatment for diabetic wounds,” said Ali Khademhosseini, Ph.D., TIBI’s Director and CEO. “And it offers the potential for use in future biomedical applications.”

 

Authors are: Johnson V. John, Navatha Shree Sharma, Guosheng Tang, Zeyu Luo, Yajuan Su, Shelbie Weihs, S.M. Shatil Shahriar, Guangshun Wang, Alec McCarthy, Justin Dyke, Yu Shrike Zhang, Ali Khademhosseini, and Jingwei Xie.

This work was partially supported by funds from the University of Nebraska Medical Center (UNMC), National Institute of General Medical Science (NIGMS) of the National Institutes of Health under Award Numbers R01GM138552 and R01GM13403, Nebraska Research Initiative grant, and NE LB606.

 

PRESS CONTACT

 

Stewart Han, [email protected], +1 818-836-4393

Terasaki Institute for Biomedical Innovation

 

###

 

The Terasaki Institute for Biomedical Innovation (terasaki.org) is a non-profit research organization that invents and fosters practical solutions that restore or enhance the health of individuals.  Research at the Terasaki Institute leverages scientific advancements that enable an understanding of what makes each person unique, from the macroscale of human tissues down to the microscale of genes, to create technological solutions for some of the most pressing medical problems of our time.  We use innovative technology platforms to study human disease on the level of individual patients by incorporating advanced computational and tissue-engineering methods.  Findings yielded by these studies are translated by our research teams into tailored diagnostic and therapeutic approaches encompassing personalized materials, cells and implants with unique potential and broad applicability to a variety of diseases, disorders, and injuries. 

The Institute is made possible through an endowment from the late Dr. Paul I Terasaki, a pioneer in the field of organ transplant technology.



Journal

Advanced Functional Materials

DOI

10.1002/adfm.202206936

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Nanofiber Aerogels with Precision Macrochannels and LL-37-Mimic Peptides Synergistically Promote Diabetic Wound Healing

Article Publication Date

31-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

August 27, 2025
blank

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Jurema-Preta in Caatinga Silvopastoral Systems

Exploring Aged Garlic Extract’s Effects on Oral Bacteria

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.