• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Microbes measure ecological restoration success

Bioengineer by Bioengineer
March 14, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Martin Breed, University of Adelaide

The success of ecological restoration projects around the world could be boosted using a potential new tool that monitors soil microbes.

Published in the journal Molecular Ecology, University of Adelaide researchers have shown how the community of bacteria present in the soil of land that had been cleared and grazed for 100 years was returned to its natural state just eight years after revegetation with native plants.

The researchers used next generation sequencing of the DNA in soil from samples taken across the site that had a range of plantings between six and 10 years old.

The technique – high-throughput amplicon sequencing of environmental DNA (eDNA), otherwise known as eDNA metabarcoding – identifies and quantifies the different species of bacteria in a sample.

"Ecological restoration is an important management intervention used to combat biodiversity declines and land degradation around the world, and has very ambitious targets set under the Bonn Challenge and extended at the 2015 Paris climate talks," says Professor Andy Lowe, Chair of Plant Conservation Biology in the University's Environment Institute.

"The success of these impressive goals will rely on delivering effective restoration interventions, but there are concerns that intended outcomes are not being reached. Most projects are insufficiently monitored, if at all, and where it does occur the monitoring is logistically demanding, hard to standardise, and largely discounts the microbial community."

The researchers – students Nick Gellie and Jacob Mills, Dr Martin Breed and Professor Lowe – analysed soil samples at the restoration site at Mt Bold Reservoir in the Adelaide Hills, South Australia, and compared them with neighbouring wilderness areas as 'reference sites'.

"We showed that the bacterial community of an old field which had been grazed for over 100 years had recovered to a state similar to the natural habitat following native plant revegetation – an amazing success story," says Dr Breed, Research Fellow in the Environment Institute.

"A dramatic change in the bacterial community were observed after just eight years of revegetation. The bacterial communities in younger restoration sites were more similar to cleared sites, and older sites were more similar to the remnant patches of woodland."

The researchers say that eDNA metabarcoding holds great promise as a cost-effective, scalable and uniform ecological monitoring tool to assess the success of the restoration.

"Although still needing further development, this tool has significant scope for improving the efficacy of restoration interventions more broadly and ensuring the global targets set are achieved," says PhD student Nick Gellie, lead author of the work.

###

Media Contact: Professor Andrew Lowe, Chair of Plant Conservation Biology, Environment Institute, University of Adelaide. Mobile: +61 (0)434 607 705, [email protected]

Dr Martin Breed, Research Fellow, Environment Institute, University of Adelaide. Phone: +61 (0) 8 8313 1706. Mobile: +61 (0) 424 166 556, [email protected]

Robyn Mills, Media Officer, Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, [email protected]

Media Contact

Andrew Lowe
[email protected]
61-043-460-7705
@UniofAdelaide

http://www.adelaide.edu.au

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Gut Microbes Predict Malaria Severity in Monkeys, Humans

December 19, 2025
Choosing Models: Linking Cat Intake to Socioeconomics

Choosing Models: Linking Cat Intake to Socioeconomics

December 19, 2025

Social Determinants Impact Tobacco Cessation in Veterans

December 19, 2025

Palmitoylation in Spermine Metabolism Fuels Prostate Cancer

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut Microbes Predict Malaria Severity in Monkeys, Humans

Choosing Models: Linking Cat Intake to Socioeconomics

Social Determinants Impact Tobacco Cessation in Veterans

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.