• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Method combination allows deep insights into ultrafast light-induced processes

Bioengineer by Bioengineer
February 13, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © Lunghammer – TU Graz


Since the 1990s, femtochemistry has been researching ultrafast processes at the molecular level. In the last few years, the research group Femtosecond Dynamics at TU Graz’s Institute of Experimental Physics has been able to achieve a number of successes in the area of light-matter interaction. “A precise understanding of the processes triggered by photoexcitation in molecules is, for example, a prerequisite for the development of sustainable technologies that enable an energy supply based on solar energy,” says Markus Koch, the head of the working group. As an example, he cites photocatalysis, which helps to convert sunlight into chemical energy with advantages in terms of long-term storage and energy density when compared to the generation of electrical energy via photovoltaics.

One method for such molecular dynamic investigations makes use of so-called pump-probe measurements applying an ultrashort laser pulse to excite (“pump”) a molecular system into a desired state. After an adjustable delay time, a second (“probe”) laser interrogates the population of the excited state by ionizing the molecule. The energy of the emitted photoelectrons is measured and by varying the pump-probe delay time, conclusions can be drawn about the energy flow in the molecule.

Heisenberg’s energy-time uncertainty principle prevents exact results

An exact description of light-induced processes on their real time scale has so far failed for some polyatomic molecules that may take different decay or fragmentation routes after excitation, depending on the choice between closely spaced energy states. As a result of Heisenberg’s energy-time uncertainty principle, laser pulses of only femtosecond (10-15 seconds) time duration cannot selectively excite closely neighbouring molecular states. However, short pulses are a prerequisite for the observation of extremely fast processes.

New approach combines theory and experiment

In collaboration with researchers of the Institute of Theoretical Chemistry at the Faculty of Chemistry of the University of Vienna under the direction of Prof. Leticia González, the experimental physicists in Graz have now overcome this hurdle. By combining experiments with ultrashort laser pulses and theoretical simulations of light-induced processes, the energy flow in acetone – a molecule that has already been well studied – could now be observed for the first time at a key energy window between three closely related states. Even for the Vienna group, a driving force in the field of the theoretical description of molecules after light excitation, the system under investigation presented a challenge. “For these simulations, new developments in our local software package SHARC (https://sharc-md.org/) were necessary, without which the correct description of acetone dynamics would not have been possible,” emphasizes González.

Synergy effects yield new insights

Both methods in themselves are widely used, but “while the energy-time-blur relation in femtosecond spectroscopy prevents precise results, real-time simulations provide deeper insights into molecular dynamics, which in turn require the experimental results to be verified,” explains Koch. The combination of these two techniques now provides researchers with a deeper insight into acetone dynamics and is a further milestone in the study of light-matter interactions. The results were published in The Journal of Physical Chemistry Letters.

This research area is anchored in the Field of Expertise “Advanced Materials Science”, one of five strategic foci of TU Graz. Participating researchers are members of NAWI Graz Physics.

###

Link to the original publication

Revealing Ultrafast Population Transfer between Nearly Degenerate Electronic States
Pascal Heim, Sebastian Mai, Bernhard Thaler, Stefan Cesnik, Davide Avagliano, Dimitra Bella-Velidou, Wolfgang E. Ernst, Leticia González, and Markus Koch
The Journal of Physical Chemistry Letters 2020, 11
DOI: 10.1021/acs.jpclett.9b03462

Contacts:

DI Dr. Markus Koch,

Assoc.Prof. Dipl.-Ing. Dr.techn.

TU Graz | Institute of Experimental Physics

Rechbauerstrasse 16, 8010 Graz

Phone: +43 316 873 8161

[email protected]

Leticia González

Univ.-Prof. Dr. Dr. h.c.

University of Vienna | Institute of Theoretical Chemistry

Währinger Str. 17, A-1090 Vienna

Tel: +43-1-4277-52750

[email protected]

Media Contact
Markus Koch
[email protected]
43-316-873-8161

Related Journal Article

http://dx.doi.org/10.1021/acs.jpclett.9b03462

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMolecular PhysicsNuclear PhysicsResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.