• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Methanogenic microorganisms as workhorses of the industrial bioeconomy

Bioengineer by Bioengineer
January 28, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: (c) Nicole Matschiavelli


The Federal Ministry of Education and Research (BMBF) is funding the research consortium with a grant of more than two million euros.

The Science Year 2020 has its focus on Bioeconomy with the aim of communicating state-of-the-art research on bio-based technologies and the associated concepts for a more sustainable economy to a broad public. With the new Science Year just having started, the Faculty of Biology at TU Dresden received the approval of a promising, large-scale bio-economic project in mid-January. Project coordinator Professor Michael Rother is delighted and eager to start researching and operating the small methanogenic eco-factories: “Methanogens, which are methanogenic microbes from the domain Archaea, have so far “only” been industrially applied as efficient biogas producers. With MethanoPEP we want to develop a broader application for them in sustainable production processes”.

The biological formation of methane (methanogenesis) is considered one of the oldest known metabolic processes, playing an essential role in the global carbon cycle. Methane, the end product of methanogenic metabolism, has become a highly attractive renewable energy source because it can be produced comparatively easily from biomass and can easily be distributed and stored in the existing natural gas grid.

However, in addition to their methane production capacity, the small power plants harbour unexplored metabolic capabilities that represent interesting resources for biotechnological applications.

Through synergetic cooperation, the project partners will strive to advance the expertise on methanogens through fundamental and applied research in three areas. The overall goal is to make the small power plants more robust, more versatile and universally applicable: The first field is the development of new and the optimisation of current cultivation principles. For example, the potential of electroactive methanogens in microbial electrosynthesis has barely been investigated so far. The second field covers the development of new and the advancement of current methods for the genetic manipulation of methanogens. Currently, Methanothermobacter, the only methanogen industrially employed in pure culture, is not genetically accessible at all. The third field is the expansion of the application potential of methanogens beyond methane production. By modifying their endogenous metabolism, the eco-factories are to produce value-added compounds, such as isoprenoids, beside methane. Isoprenoids are the largest class of natural products and are used in all areas of life, for example in pharmaceuticals, flavours, fragrances and plastics.

“The fact that the methanogens investigated by MethanoPEP only require water, salts, carbon dioxide and a (renewable) source of electrons promises to make the production competitive, even if initially the products only occur in small amounts. The biosynthesis of isoprenoids is proposed as proof of concept in MethanoPEP, but in principle, metabolic engineering could be used to produce any metabolite derived from acetyl-coenzyme A from methanogens,” said Prof. Rother explaining the huge potential of the small eco-factories.

###

Media Contact
Dr. Michael Rother
[email protected]
49-351-463-42611

Tags: BiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

miCDER: Advanced Model Uncovers miRNA-Disease Relations

November 28, 2025
blank

Boosting Sudan Desert Bucks: Fish Oil and Vitamin E

November 27, 2025

Chloroplast Genome Insights from Aegilops in Wheat

November 27, 2025

SP1/NEDD4L Axis Inhibits Breast Cancer via SNAI2

November 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Laminin-α2 Loss Triggers Muscle Stem Cell Failure

Advancing MgO Bioceramics: Hydroxyapatite-SiOâ‚‚ Dual Oxidation

New Insights: Low Lateralization in Cushing’s Diagnosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.