• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Methane-eating microbes may reduce release of gases as Antarctic ice sheets melt

Bioengineer by Bioengineer
July 31, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Reed Scherer

GAINESVILLE, Fla. — Lurking in a lake half a mile beneath Antarctica's icy surface, methane-eating microbes may mitigate the release of this greenhouse gas into the atmosphere as ice sheets retreat.

A new study published today in Nature Geoscience traces methane's previously unknown path below the ice in a spot that was once thought to be inhospitable to life. Study researchers sampled the water and sediment in Antarctica's subglacial Whillans Lake by drilling 800 meters through ice for the first time ever. Next they measured methane amounts and used genomic analyses to find that 99 percent of methane released into the lake is gobbled up by microbes.

These tiny microorganisms may have a big impact on a warming world by preventing methane from seeping into the atmosphere when ice sheets melt, said Brent Christner, a University of Florida microbiologist and co-author on the study.

"This is an environment that most people look at and don't think it could ever really directly impact us," Christner said. "But this is a process that could have climatic implications."

Since sunlight cannot reach Antarctica's subglacial lakes to provide energy for life, some microbes convert methane into carbon dioxide as a way to make energy. Ultimately, methane traps more heat in the atmosphere than carbon dioxide, and study findings suggest microbes may play a critical role in reducing the quantity of methane released into the atmosphere as ice sheets melt, according to Christner, a professor of microbiology and cell science in UF's Institute of Food and Agricultural Sciences.

"There's been a lot of concern about the amount of methane that's beneath these ice sheets because we don't know exactly what's going to happen to it," Christner said.

The study found that Lake Whillans contains large amounts of methane. Melting Antarctic ice sheets may release the trapped gases stored in these underground lake reservoirs, Christner said. Researchers have estimated that over 10^14 cubic meters of methane, enough gas to fill more than a billion hot air balloons, is stored beneath Antarctic ice, ready to be released under the right conditions.

Given that methane has a greenhouse effect that is 30 times that of carbon dioxide, the researchers were motivated to understand its quantity, source and ultimate fate beneath the ice, according to the manuscript. However, Christner said it is important to note that while carbon dioxide does not increase warming as quickly as methane, it is still a driver of climate warming.

Future studies will assess whether this process is pervasive across subglacial lakes in Antarctica. Christner and his colleagues plan to drill into a different subglacial lake in 2018-2019.

###

Other study authors include Alexander Michaud, John Dore, Mark Skidmore, and John Priscu from Montana State University, Amanda Achberger from Louisiana State University, and Andrew Mitchell from Aberystwyth University.

Media contact: Stephenie Livingston, [email protected], 352-846-3903
Writer: Rachel Damiani, [email protected]
Source: Brent Christner, [email protected], 352-392-1179

Media Contact

Stephenie Livingston
[email protected]
352-846-3903
@uflorida

http://www.ufl.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Snake Secretions Repel and Poison Ants

Snake Secretions Repel and Poison Ants

August 24, 2025
Exploring Genetic Diversity in Australia’s Sheep Blowfly

Exploring Genetic Diversity in Australia’s Sheep Blowfly

August 24, 2025

Philothamnus Snakes: Breeding, Communication, and Combat

August 24, 2025

Squirrel Landings Impact Ants and Arboreal Arthropods

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    132 shares
    Share 53 Tweet 33
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nature’s Remedies: Green Chemistry for Prostate Health

Equity in Ethiopia’s HIV/AIDS Policy: A Content Analysis

Barriers to Patient-Reported Outcomes in Rheumatoid Arthritis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.