• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Metastases use divided blood vessels to grow

Bioengineer by Bioengineer
October 27, 2021
in Biology
Reading Time: 4 mins read
0
Pandita and Levin
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the first time, researchers at the University of Gothenburg have shown that metastases in patients with malignant melanoma gain access to the circulatory system not only through the outgrowth of new blood vessel branches, but also an alternative process in which one blood vessel divide into two parallel vessels bylongitudinal splitting. The finding revisits an old research idea about how the growth of tumors can be inhibited by blocking formation of new blood vessels.

Pandita and Levin

Credit: Photo by Mari Johansson

For the first time, researchers at the University of Gothenburg have shown that metastases in patients with malignant melanoma gain access to the circulatory system not only through the outgrowth of new blood vessel branches, but also an alternative process in which one blood vessel divide into two parallel vessels bylongitudinal splitting. The finding revisits an old research idea about how the growth of tumors can be inhibited by blocking formation of new blood vessels.

Like all other organs, tumors need access to the circulatory system to grow. Fifty years ago, a physician and researcher in the U.S., Judah Folkman,  suggested that cancer cells trick the body into giving tumors access to the circulatory system by secreting molecules that stimulate the growth of new blood vessels.

Folkman then also suggested that tumors without access to blood vessels could never become larger than approximately one millimeter in diameter. This began many years of intensive work among cancer researchers, which in the 1990s resulted in identifying VEGF as the growth factor that signals adjacent blood vessels that they should create a new branch.

It was hypothesized that blocking VEGF would stop growth of all solid cancer tumors. But those hoping that this would become the great cure for all cancer with solid tumors were disappointed, because medications to block the growth factorhad no or limited effect in most cancers.

New way for blood vessels to spread

In the mid-1980s, in the shadow of intensive research on how new branches grow out of a blood vessel (known as sprouting angiogenesis), researchers in Switzerland showed that blood vessels can also divide  longitudinally (intussusceptive angiogenesis). For nearly 200 years, researchers have known that blood vessels can grow with new branches, but intussusceptive angiogenesis is still relatively unknown.

In an extensive study, researchers at the University of Gothenburg have examined images of nearly 10,000 vessels in metastatic samples from patients with malignant melanoma. In a publication in American Journal of Pathology, they show that this form of angiogenesis occurs in metastases in malignant melanoma.

Time-consuming work

“This has taken a long time, where we carefully went through images from patients’ metastases to find the small structures that indicate the blood vessels are dividing,” says the work’s first author, Ankur Pandita. She is a doctoral student at the University of Gothenburg and a resident physician in oncology at Sahlgrenska University Hospital. “We have been looking for small intravascular pillars in the vessels, which occur just before the vessel divides. The pillars are extremely small, only one-twentieth the thickness of a hair.”

“The fact that tumors have an alternative way of accessing blood vessels may explain why VEGF inhibitors are inefficient in most tumors,” says Max Levin, associate professor at the University of Gothenburg and senior consultant in oncology at Sahlgrenska University Hospital. “Intussusceptive angiogenesis is an powerful way for blood vessels to spread in a tissue. In less than an hour, the blood vessel has formed the pillar that prepares it to divide.”

Possible medication

By combining epifluorescence and confocal microscopy, the team could visualize the pillars inside the vessels in the tumor samples. With RNA sequencing, researchers have begun to identify factors required for the division of blood vessels. A member of a group of enzymes known as matrix metalloproteinases (MMPs) seems to play an important role in dissolving blood vessel walls to permit the vessels to divide lengthwise.

“Our results suggests that intussusceptive angiogenesis  contribute to the growth of daughter tumors in patients with metastatic malignant melanoma,” says Max Levin. “There are already pharmaceuticals today that inhibit MMP proteins, MMP inhibitors MMP inhibitors prevent the formation of pillars in experimental models, and the pharmaceuticals have the potential to be part of a treatment arsenal that can stop growth of metastases in patients with malignant melanoma.”

In the next step, the team will use a new techniques, spatial transciptomics and single cell RNA sequencing, to analyze gene expression in intravascular pillars. The goal is to identify which proteins and signaling pathways provide the starting signal for intussusceptive angiogenesis. The team concurrently is working on identifying mouse models for malignant melanoma, where intussusceptive angiogenesis contributes to tumor growth.



Journal

American Journal Of Pathology

DOI

10.1016/j.ajpath.2021.07.009

Article Title

Intussusceptive Angiogenesis in Human Metastatic Malignant Melanoma

Article Publication Date

13-Aug-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Group Therapy Boosts Recovery in Elderly Depression

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

Decoding Phantom Limb Movements via Intraneural Signals

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.