• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Metal-free catalyst to convert aldehyde into ketone, a basic structure of pharmaceuticals

Bioengineer by Bioengineer
April 3, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kanazawa University

[Background]

Ketones are important organic compounds found in a variety of pharmaceuticals, agrochemicals, and natural products. The synthesis of a ketone directly from a corresponding readily-available aldehyde would be ideal and has been successfully performed using a metal catalyst. However, metal catalysts are expensive and the metal remaining in the final products may cause problems. On the other hand, N-heterocyclic carbene*1), an organic compound, is known to act as an organic catalyst*2) for such synthesis. N-heterocyclic carbene reacts with an aldehyde to form a Breslow intermediate*3). This Breslow intermediate, acting as a nucleophile followed by two-electron transfer, reacts with various electrophiles to form a ketone. However, this carbon-carbon bond formation following two-electron transfer is known to be sterically hindered and N-heterocyclic carbene is known to react only with electrophiles with activated electrons.

[Outline of research results]

The group at Kanazawa University, including two students, has succeeded in synthesizing a ketone from an aldehyde and a carboxylic acid by using N-heterocyclic carbene catalyst (Figure 1).

The key to the success of the reaction developed in this study was the discovery of a new reaction process in which radical-radical coupling followed by carbon-carbon bond formation took place after one electron transfer occurred from a Breslow intermediate of an enolate*4) formed from an aldehyde and an N-heterocyclic carbene to an electrophile (Figure 2). Since a highly reactive radical is used in the process of the carbon-carbon bond formation, it is possible to introduce a sterically bulky alkyl substituent, which used to be difficult in such a reaction.

It addition, the group succeeded in converting a carboxylic acid, part of many pharmaceutical drugs and natural products, into a ketone by the method described here (Figure 3).

[Future prospects]

The group at Kanazawa University succeeded in synthesizing a ketone, an important skeleton of many pharmaceuticals, from a readily available aldehyde and a carboxylic acid. The method makes possible the rapid synthesis of ketones even with bulky substituents, as well as those derived from pharmaceuticals or natural products.

Accordingly, our method is expected to accelerate drug discovery.

From a purely scientific viewpoint, it should be noted that the new reaction process, i.e. a radical-radical coupling after one electron transfer occurring from a Breslow intermediate, will be a new design guideline for N-heterocyclic carbene catalytic reactions.

###

[Glossary]

*1) Carbene

A carbene is a twofold coordination chemical species containing a neutral carbon atom with only six valence electrons.

*2) Organic catalyst

A catalyst accelerates a specific chemical reaction with itself being unchanged. An organic catalyst is a low molecular weight chemical catalyst that consists of atoms of carbon, hydrogen, oxygen, nitrogen, sulfur, etc. but without metal elements.

*3) Breslow intermediate

A Breslow intermediate is a chemical species having an enol skeleton, being formed by a reaction of aldehyde and N-heterocyclic carbene. It is regarded as an acyl anion equivalent.

*4) Enolate

An enolate is an anionic chemical species with a deprotonated hydroxyl group attached to one carbon atom of carbon-carbon double bond.

Media Contact
Yuki Kashin
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/jacs.9b00880

Tags: Chemistry/Physics/Materials SciencesPharmaceutical Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Off-the-Shelf mRNA Vaccines Target Liver Cancer

Postnatal Bacterial Colonization Trends in Preterm Infants

Exploring Hypericum Revolutum: Antioxidant, Antibacterial, and Essential Oils

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.