• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Metabolic pathway regulating key stage of embryo development revealed

Bioengineer by Bioengineer
January 17, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Department of Developmental and Regenerative Biology, Medical Research Institute,TMDU

Researchers identify metabolic pathway essential for embryo development, thus extending knowledge of how embryos form and how to develop a safer drug regimen for pregnant women

Tokyo – Much has been revealed about how a single fertilized cell, the egg, can develop into a complete organism simply via repeated cycles of cell division. However, many gaps remain in our understanding of how these dividing cells are directed to arrange themselves appropriately at each stage of embryonic development.

Researchers centered at Tokyo Medical and Dental University (TMDU) have now made a major step in delineating such development in the womb by showing the importance of a particular metabolic pathway for formation of the "primitive streak" in embryos. This primitive streak is a groove that maintains symmetry of the embryo and allows it to develop properly.

After fertilization, the egg repeatedly undergoes cell division, leading to a ball of cells with 2, 4, 8, 16, 32 cells, and so on. However, for development into a fully formed embryo, the ball must undergo a process called gastrulation, whereby it is transformed into a hollow, ball-like, three-layered structure. Initiation of gastrulation requires the primitive streak.

To shed light on primitive streak formation, the team applied a tool that uses clusters of mouse embryonic stem cells to mimic embryo development. By applying a wide range of drugs to these embryo mimics, they identified a number of drugs that stopped the embryonic cells from developing and differentiating normally. Some of the drugs block the functioning of the mevalonate pathway, so the team looked at whether, and how, this metabolic pathway is linked to the primitive streak.

"When we applied the drugs statins, which are extremely useful for lowering cholesterol levels, to the embryo mimics, they stopped differentiating normally into cardiomyocytes at a time that corresponds to when the primitive streak forms," study coauthor Ruoxing Yu says. "Interference with the mevalonate pathway in this way resulted in a reduced survival rate of the embryos."

Equivalent experiments in zebrafish, another useful model for biological studies, confirmed that embryonic development was halted by blocking of the mevalonate pathway. The team then looked at the specific effects of this blocking. They found that it involves cessation of a form of protein modification called farnesylation; specifically that of a protein called lamin-B. This was confirmed by switching lamin-B expression on or off in the embryo mimics, which affected the expression of other protein markers specifically expressed in the primitive streak.

"This discovery of the involvement of the mevalonate pathway and lamin farnesylation in primitive streak formation greatly raises our understanding of how embryos are programmed to develop through the gastrulation stage," lead author Yoshimi Okamoto-Uchida says. "This is also important because statin drugs are widely used for purposes such as lowering cholesterol, but the use of these drugs in pregnant women is forbidden. Our results shed light on how these drugs affect embryo development, which helps understanding of the guidelines regarding statin use in pregnant women."

###

Media Contact

Hiroshi Nishina
[email protected]

http://www.tmd.ac.jp/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

New Role for PPARs in Bovine Hepcidin Regulation

November 11, 2025

Diabetes Self-Care and Quality of Life in Ghana

November 11, 2025

AI’s Influence on Personalized Language Learning Strategies

November 11, 2025

Creating Hydrophobic Starch Esters from Sunflower Oil Waste

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Role for PPARs in Bovine Hepcidin Regulation

Diabetes Self-Care and Quality of Life in Ghana

AI’s Influence on Personalized Language Learning Strategies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.