• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Merge attack: Scientists find mechanism of virus penetration into living cell

Bioengineer by Bioengineer
July 30, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © NUST MISIS

A joint research team from the A.N. Frumkin Institute of Physical Chemistry & Electrochemistry (RAS), NUST MISIS, and MIPT, as well as participants from several other research centers, have described the biophysical principles of influenza's infiltration into the body's cells. The researchers have created a theoretical model describing the mechanical properties of the lipid membranes of both the virus and the targeted cells, making it possible to connect the mechanisms of membranes with cell resistance. A series of three articles containing the new research have been published in special editions of the International Journal of Molecular Sciences.

Viruses often present the main threat to the human body, with diseases like Human Immunodeficiency Virus (HIV), Herpes, Hepatitis, Ebola and forms of influenza, among others, causing serious damage. These viruses invade the cells of the affected body by merging their membrane with the cell membrane or its organelles. "Fusion proteins" facilitate this process, leading to contact between the lipid membrane of both the virus and the target cell.

As viruses are extremely simple constructions, only capable of parasitic functions and not capable of an independent production of energy, their fusion proteins can attack cell membranes only with their original energy. Essentially, the fusion proteins are like chains &laquoshooting» into the membrane of the infected cell, trapping and pulling the cell membrane toward the virus to start the fusion process.

Because of this unusual mechanism of penetration, it turned out that the viral infection process of cells often depends on the properties of the cell's lipid membrane, particularly its elasticity. In other words, the more difficult it is for viral proteins to mechanically deform the cell membrane, the less likely it is that the cell will be infected.

The researchers have developed a theoretical model that predicts the energy costs viral proteins need to overcome to cause the fusion of its own membrane with the &laquovictim's» membrane. Following the changes in the energy of this process, physicists have found several alternative attack scenarios – some of which end up with the virus &laquowinning», while other cases see a deadlock formed where the virus is no longer able to force itself upon a cell.

&laquoWe were inspired by experiments on viral fusion research using cryoelectronic microscopy methods. Unusual structures, not predicted by any of the existing theoretical models of membrane fusion, were found in them. That's why we have proposed our modified fusion model and showed that the structures we detected are dead-end and lead to the virus merging with the cell. [We've also] calculated how the structure of viral fusion proteins affect the choice of the process's pathway, whether successful or [not]», said Timur Galimzyanov, a co-author of the research article and a researcher at the NUST MISIS Department of Theoretical Physics & Quantum Technologies.

It is noteworthy that all the conclusions described in the work were obtained using general approaches in Physics without the need to introduce specific chemical interactions, as often happens in cases such as these. Nevertheless, it turned out that the process of membrane fusion is influenced by several key factors, and a corresponding study was then devoted to each factor.

The geometric parameters of fusion proteins that attack the membrane of the &laquovictim»-cell, the pH of the environment determining the structure of proteins, and the presence of so-called &laquorafts» are the three factors the researchers focused on. An article devoted to the third factor was published in mid-May 2018. That article explains how the &laquorafts», islands of hard molecules, move relatively freely along the semi-liquid cell membrane and interact with viruses, a piece that plays a crucial role in determining how the fusion process will go. The result of this work was the relatively simple conclusion that the presence of the raft in the area of attack, at least in the case of HIV, promotes fusion, and, as a consequence, the successful penetration of viral genetic material into the cell.

The researchers emphasize that in the future their results will be adapted for a wider class of objects, although the theoretical model's current predictions pose an important verification problem for the field. If the research's conclusions about the role of a cell membrane's mechanical properties are confirmed by future research, it could be the jumping off point in the study of viral processes and mechanisms of cell protection.

###

Media Contact

Lyudmila Dozhdikova
[email protected]
7-495-647-2309

http://en.misis.ru/

Related Journal Article

http://dx.doi.org/10.3390/ijms19051483

Share14Tweet8Share2ShareShareShare2

Related Posts

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025

Impact of Defect Size and Location on Spinal Fractures

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.