• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mending materials

Bioengineer by Bioengineer
March 8, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lehigh University

Few creatures, aside from humans, have the ability to reshape the world in which they live.

The humble earthworm is one such example. As a "terrestrial engineer," it tunnels through and aerates the soil, incorporating organic matter along the way and benefiting nearby plants.

The North American beaver, the second-largest rodent in the world, is known as "nature's engineer" for its habit of constructing dams on rivers and streams, then building its home in the resulting pond.

As it turns out, the human mesenchymal stem cell (hMSC) acts as an environmental engineer of sorts. When placed in a Jello-like material known as a hydrogel, the cell secretes a substance that breaks down and "remodels" the material, a necessary step allowing it to move around.

These particular human stem cells — which have the ability to differentiate into bone, cartilage, muscle and fat cells — play a vital role in wound healing. Once hMSCs migrate to the affected site, they regulate inflammation and restart healing in chronic wounds.

One strategy to foster wound healing is to implant a hydrogel infused with hMSCs directly into a wounded area. The hydrogel provides structural support to the surrounding tissue while the stem cells differentiate and call the appropriate cells to the wound for tissue regeneration.

During the healing process, hMSCs begin their engineering work and the hydrogel breaks down. If their remodeling efforts were better understood, materials could be designed with optimal properties for wound healing.

Kelly Schultz, P.C. Rossin Assistant Professor of chemical and biomolecular engineering at Lehigh University, has received a National Science Foundation (NSF) CAREER Award to explore this promising area of biomaterials and cell biology.

Schultz's project will apply a combination of new and existing methods to characterize the region around hMSCs during cell remodeling and degradation of a synthetic hydrogel.

The research will focus on how hMSCs handle "rheologically distinct" environments they encounter as they move – in other words, materials with features that vary in stiffness. Schultz believes hydrogels can be developed to optimize wound healing as well as maintain structural integrity of the surrounding tissue.

Ultimately, the research promises to have a major impact on biomaterials design, leading to new materials with the potential to speed wound healing and prevent development of chronic wounds.

The prestigious five-year grant for CAREER: Determining the structure and properties of cell re-engineered microenvironments using rheology in synthetic wound healing scaffolds, officially began March 1.

"It is a great honor to receive an NSF CAREER award because you are chosen by accomplished senior scientists in your field," Schultz said. "To me, this recognition means that I am making an impact on my community with my work."

Schultz joins Rossin College's 30 other NSF CAREER Award winners and is the fifth faculty member in the chemical and biomolecular engineering department to receive the honor.

"The grant enables us to push our work further," Schultz said. "We have been interested in cell-material interactions for a long time but being able to do a thorough study of how rheology changes these interactions will give new insight into design of these biomaterials, which have the potential to impact society."

As part of her grant, Schultz plans extensive outreach activities to educate a broad audience in biomaterials, materials characterization and wound healing. Public outreach is planned for the Da Vinci Science Center in Allentown, Pennsylvania, a local science museum. In addition, Schultz will mentor local middle and high school students as well as train and mentor undergraduate and graduate students at Lehigh.

Schultz's main research interests are in the areas of rheology of hydrogels, dynamic rheological changes of colloidal gels and the role of hMSCs in remodeling enzymatically cleavable hydrogels.

Schultz received her Ph.D. in chemical engineering from the University of Delaware in 2011 and joined Lehigh in 2013 following two years of postdoctoral studies at the Howard Hughes Medical Institute at the University of Colorado. In 2014, she was named a "Distinguished Young Rheologist." an international honor from TA Instruments, the leading manufacturer of analytical instruments for thermal analysis, rheology and microcalorimetry. The same year, she won a Doctoral New Investigator grant from the American Chemical Society's (ACS) Petroleum Research Fund for her studies of the material properties of chemically cross-linked polymeric gels.

Schultz participated in the National Academy of Engineering (NAE) 22nd annual U.S. Frontiers of Engineering (USFOE) symposium in 2016, which recognizes engineers aged 30-45 who perform exceptional research. Schultz was one of 83 engineers from industry, academia and government to be nominated and selected for the impact of their work.

###

Key links:

Faculty profile: Kelly Schultz

Department of Chemical and Biomolecular Engineering, Lehigh University

NSF CAREER award: Kelly Schultz

Resolve Magazine: Finding new uses for the versatile polymeric gel

Rossin College NSF CAREER Award winner photo gallery

Media Contact

Mary Anne Lynch
[email protected]
@lehighu

http://www.lehigh.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Terasaki Institute and Caltech Secure $2.8 Million CIRM Grant to Propel Human Embryo Formation Research

Terasaki Institute and Caltech Secure $2.8 Million CIRM Grant to Propel Human Embryo Formation Research

November 15, 2025
Rediscovery of Lost Fish Species Offers New Hope for Conservation Efforts

Rediscovery of Lost Fish Species Offers New Hope for Conservation Efforts

November 15, 2025

Gene Editing Advances in Leishmania for Disease Control

November 15, 2025

Uncovering the Asian fish tapeworm’s bacterial mystery

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Terasaki Institute and Caltech Secure $2.8 Million CIRM Grant to Propel Human Embryo Formation Research

Optimizing Sintering Temperature for Enhanced Supercapacitor Performance

Quantifying Leaflet Fluttering in Bovine Heart Valves

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.