• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mending hearts in three dimensions

Bioengineer by Bioengineer
October 26, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kyoto University iCeMS

The creation of cardiac tissue-like constructs could offer an effective and convenient "woundplast" for repairing myocardial infarction.

Researchers from Kyoto University iCeMS and Osaka University have made biodegradable aligned nanofibers as a scaffold for culturing cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs). These CMs form myofibril-aligned, multi-layered and 3D-organized Cardiac Tissue-Like Constructs (CTLCs), which show robust drug response and may be readily used for repair of injured rat hearts with myocardial infarctions.

Researchers from the Institute for Integrated Cell-Material Sciences (iCeMS) of Kyoto University and the Department of Cardiovascular Surgery of Osaka University have developed effective and convenient Cardiac Tissue-Like Constructs (CTLCs) for repairing myocardial infarctions.

Cardiovascular diseases such as infarctions are the leading cause of death globally. A seriously injured heart cannot recover by itself, and heart transplants are the only effective treatment. However, the waiting list for transplants is extremely long. Previous researchers have also used cell transplant technologies to repair injured hearts, but these used CMs organized in two dimensions with a random, myofibril structure, which is different from natural heart tissue.

Dr. Li Liu and Prof. Yong Chen of iCeMS, together with Prof. Yoshiki Sawa of Osaka University and colleagues, selected a PLGA material approved by the FDA, and prepared biodegradable, aligned nanofibers for culturing CMs derived from hiPSCs, successfully creating organized and functional CTLCs.

They found that the CMs infiltrated and enveloped the nanofibers, showing elongation and high organization with upregulated expression of cardiac markers. Their CTLCs demonstrated more robust drug response compared with 2D CMs.

The team also used the CTLCs to simulate the repairing of disconnected and arrhythmia CMs. When used to repair injured rat hearts, the CTLCs showed excellent operability leading to favorable heart function recovery.

Future studies are now being planned to use CTLCs to repair injured hearts of larger animals, before advancing to clinical applications.

###

The paper "Human Pluripotent Stem Cell-Derived Cardiac Tissue-Like Constructs for Repairing of the Infarcted Myocardium" appeared on October 26, 2017 in Stem Cell Reports.

The Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University in Japan aims to advance the integration of cell and material sciences, both traditionally strong fields at the university, in a uniquely innovative global research environment. iCeMS combines the biosciences, chemistry, materials science and physics to create materials for mesoscopic cell control and cell-inspired materials. Such developments hold promise for significant advances in medicine, pharmaceutical studies, the environment and industry. http://www.icems.kyoto-u.ac.jp

Media Contact

Daisuke Kitoba
[email protected]
81-757-539-748
@KyotoU_News

http://www.kyoto-u.ac.jp/en

Share12Tweet7Share2ShareShareShare1

Related Posts

More Children, Shorter Lifespan? Clear Evidence from the Great Finnish Famine

More Children, Shorter Lifespan? Clear Evidence from the Great Finnish Famine

November 7, 2025
“Sex Differences in Placental Androgen Response to Undernutrition”

“Sex Differences in Placental Androgen Response to Undernutrition”

November 7, 2025

COP6 Decision on Dental Amalgam Advances Equity-Focused, Patient-Centered Care

November 7, 2025

Exploring Metabolic Resistance in Malaria’s Anopheles coluzzii

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Single-Cell Study Reveals Seminoma Stemness, Metastasis

More Children, Shorter Lifespan? Clear Evidence from the Great Finnish Famine

Magnetized Water Boosts Cement Mortar Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.