• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Memory ‘brainwaves’ look the same in sleep and wakefulness

Bioengineer by Bioengineer
October 9, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Identical brain mechanisms are responsible for triggering memory in both sleep and wakefulness, new research at the University of Birmingham has shown.

The study sheds new light on the processes used by the brain to 'reactivate' memories during sleep, consolidating them so they can be retrieved later.

Although the importance of sleep in stabilising memories is a well-established concept, the neural mechanisms underlying this are still poorly understood.

In this study, published in Cell Reports, scientists have been able to show for the first time in humans that distinctive neural patterns in the brain which are triggered when remembering specific memories while awake, reappear during subsequent sleep.

The findings provide further evidence of the beneficial effects of sleep on memory formation.

Gaining a more sophisticated understanding of these mechanisms also enhances our understanding of how memories are formed. This could ultimately help scientists unravel the foundations of memory disorders such as Alzheimer's and lead to the development of memory boosting interventions.

Working in partnership with researchers at the Donders Institute, in Holland, the team used a technique called Targeted Memory Reactivation, which is known to enhance memory. In the experiment, previously learned information – in this case foreign vocabulary – is played back to a person while asleep.

Using electroencephalography, the brain signals of the study participants were recorded while learning and remembering the foreign vocabulary before sleep.

Subsequently, the researchers recorded the distinct neural pathways activated as the sleeping volunteers' brains reacted to hearing the words they had learned.

Comparing neural signals fired by the brain in each state, the researchers were able to show clear similarities in brain activity.

Dr Thomas Schreiner, of the University of Birmingham's School of Psychology, who led the research, says: "Although sleep and wakefulness might seem to have little in common, this study shows that brain activity in each of these states might be more similar than we previously thought. The neural activity we recorded provides further evidence for how important sleep is to memory and, ultimately, for our well-being."

"If we can better understand how memory really works, this could lead to new approaches for the treatment of memory disorders, such as Alzheimer's disease."

Dr Tobias Staudigl, of the Donders Institute, is co-lead author of the study. He said: "Understanding how memories are reactivated in different states also provides insight into how these memories could be altered – which might for example be interesting in therapeutic settings."

The team are planning a follow-on study, devising ways to investigate spontaneous memory activation during sleep. Using advanced machine learning techniques, the researchers can record and interpret neural patterns in the brain, identifying where memories are activated without the need for an external prompt.

###

The study was funded by the Swiss National Science Foundation and the European Research Council.

For more information please contact Communications Team, University of Birmingham. Tel: (0)121 414 2772; mobile: 0778 9921165; email: [email protected]

Notes for editors

Schreiner et al (2018). 'Theta phase coordinated memory reactivation reoccurs in a slow-oscillatory rhythm during NREM sleep', Cell Reports

The University of Birmingham is ranked amongst the world's top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 6,500 international students from over 150 countries.

Media Contact

Press Office
[email protected]
@unibirmingham

http://www.bham.ac.uk

Share12Tweet8Share2ShareShareShare2

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.