• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Meet the (protein) neighbors: New method lets researchers detect proteins in close proximity in single cells

Bioengineer by Bioengineer
December 6, 2022
in Biology
Reading Time: 4 mins read
0
Prox Seq Savas Tay
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Today, most methods to determine the proteins inside a cell rely on a crude census—scientists usually grind a large group of cells up before characterizing their genetic material. But just as a population of 100 single people differs in many ways from a population of 20 five-person households, this kind of description fails to capture information about how proteins are interacting and clumping together into functional groups.

Prox Seq Savas Tay

Credit: Photo courtesy of Tay Lab

Today, most methods to determine the proteins inside a cell rely on a crude census—scientists usually grind a large group of cells up before characterizing their genetic material. But just as a population of 100 single people differs in many ways from a population of 20 five-person households, this kind of description fails to capture information about how proteins are interacting and clumping together into functional groups.

Now, researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) have developed an approach that lets them more easily study whether proteins are located in close proximity to each other inside a cell. The technology, which can be carried out at the same time as more routine gene sequencing, is described in the journal Nature Methods.

“This is a streamlined and high-throughput way to look into protein functions inside individual cells,” said Savas Tay, professor of molecular engineering and senior author of the new work. “I think this method is going to be a major resource for the molecular biology community.”

Focused on function
In recent years, with the advent of fast and cheap genetic sequencing technologies, scientists have turned to single-cell mRNA sequencing to get snapshots of cell’s internal states. By sequencing all of a cell’s mRNA molecules—which encode proteins—they can get an idea of what proteins a cell might be actively using. But this kind of proxy for protein abundance doesn’t convey the full story.

“Just knowing the abundance of certain proteins doesn’t always give you information about how a cell is functioning,” said Tay. “Often, whether or not proteins are functionally active has to do with not just whether they are present but whether they are forming complexes.”

Tay wanted to capture whether proteins were physically near each other—and do so in a fast, high-throughput way, not by relying on microscopy to visualize their locations or isolating a few proteins at a time for closer inspection.

He and his colleagues developed molecular probes that attach to proteins of interest and have DNA tags extending outward. If two proteins are physically close to each other, those DNA probes stick together like Velcro. The researchers can set up experiments that simultaneously probe hundreds of proteins in this way. Then, they use routine sequencing methods to read back any DNA probes that bound to each other and determine which proteins were paired up.

“In the vast space inside a cell, it’s very unlikely for two probes to find each other unless they are bound to nearby proteins,” said Tay. “So when the probes bind, that tells us these proteins are very close together.”

Since the approach, dubbed Prox-seq, uses standard sequencing, researchers can analyze a cell’s mRNA at the same time as the proteins of interest, to help answer questions about the correlation between mRNA and protein abundance and function.

Proof-of-concept studies
To illustrate the utility of Prox-seq, Tay’s team first tested it on B cells and T cells, two subsets of human immune cells. The technique, they found, could differentiate the cells based solely on which protein-protein interactions were present in each cell type. It also could identify previously unknown subsets of the cells based on small differences in how groups of proteins were organized within the cells. Using human derived peripheral blood mononuclear cells, they simultaneously measured 38 individual proteins, 741 protein complexes, and thousands of mRNA on each individual cell, and discovered a new protein complex that defines naïve T cells.

Then, the group used Prox-seq to study how proteins change arrangement in macrophages, another type of immune cell, when the cells become activated in response to a pathogen. Once again, they identified both known pairs of interacting proteins as well as new groups of proteins that can be used to identify not only whether a macrophage has been activated but also what type of pathogen it was exposed to.

“This showed that not only can our method verify protein-protein complexes that we already knew about, but it can find new interactions between proteins,” said Tay.

So far, the researchers have only tested the method on proteins found on the surface of cells; they’re now working to expand it to more types of proteins as develop ways to resolve exactly where within a cell proteins are interacting.



Journal

Nature Methods

DOI

10.1038/s41592-022-01684-z

Article Title

Quantification of extracellular proteins, protein complexes and mRNAs in single cells by proximity sequencing

Article Publication Date

1-Dec-2022

Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Ovarian Hormones Curb Fear Relapse via Dopamine Pathway

October 18, 2025
blank

RNA Sequencing Uncovers Bovine Embryo Activation Regulators

October 18, 2025

Placental DNA Mutations, Stress, and Infant Emotions

October 18, 2025

Unraveling Gene Co-Expression in Trypanosoma cruzi Life Cycle

October 18, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    288 shares
    Share 115 Tweet 72
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    122 shares
    Share 49 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Effective Nursing Strategies for Cardiovascular Disease Prevention

Serum Proteomics: Uncovering COVID-19 Organ Morbidity Biomarkers

ARNT2 Activates STRA6, Fueling Liposarcoma Progression

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.