• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mechanism of Marburg virus sexual transmission identified in nonhuman primates

Bioengineer by Bioengineer
August 30, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: William Discher, U.S. Army Medical Research Institute of Infectious Diseases

Research published today by a team of Army scientists sheds light on the mechanism of sexual transmission of filoviruses, including Ebola and Marburg virus, which have been shown to persist in the testes and other immune privileged sites. Their work appears online in the journal Cell Host and Microbe.

Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus disease and recently caused flare-ups of Ebola virus disease in the 2013-2016 outbreak, according to the authors. How filoviruses establish testicular persistence and are shed in semen, however, was unknown.

Led by Dr. Xiankun (Kevin) Zeng, investigators at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) conducted a study using cynomolgus macaques to examine the persistence of Marburg virus in the testes of animals that survived infection after being treated with antiviral compounds.

The team found that Marburg virus persists in the seminiferous tubules, which are the sites of immune privilege and sperm production in the testes. Persistence leads to severe testicular damage, including cell depletion and breakdown of the blood-testis barrier, according to the authors. In addition, they identified a type of specialized cells, known as the Sertoli cells, as the reservoir for the Marburg virus.

"Importantly, we also identified local infiltration of immunosuppressive regulatory T cells, which may play an important role in sustaining Marburg virus persistence," said Zeng. "Targeting these T cells may help to clear Marburg virus from the testes, thereby preventing sexual transmission of the virus."

About 30 percent of cynomolgus monkeys that survived Marburg virus infection after antiviral treatment had persistent Marburg virus infection in the testes, but not in other common target organs such as the liver, spleen, and lymph nodes, according to the authors. The fact that it takes longer for Marburg virus to infect the testes strongly suggests that early intervention with therapeutics can prevent testicular persistence.

The 2013-2016 outbreak of Ebola virus disease in Western Africa resulted in about 11,000 deaths, and left behind the biggest cohort (over 17,000 individuals) of Ebola survivors in history, according to the World Health Organization. Many follow-up studies have detected Ebola virus RNA in the semen of survivors up to 18 months after recovery.

"Sexual transmission of Ebola virus has been implicated in the initiation of entirely new transmission chains," Zeng explained. "Our study illustrates the mechanism behind testicular filovirus persistence and sexual transmission of filoviruses."

According to Zeng, the team's next step is to develop animal models to evaluate the efficacy of medical countermeasures to prevent and clear Marburg and Ebola viral persistence in the testes.

###

USAMRIID's mission is to provide leading edge medical capabilities to deter and defend against current and emerging biological threat agents. Research conducted at USAMRIID leads to medical solutions–vaccines, drugs, diagnostics, and information–that benefit both military personnel and civilians. The Institute plays a key role as the lead military medical research laboratory for the Defense Threat Reduction Agency's Joint Science and Technology Office for Chemical and Biological Defense. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command. For more information, visit http://www.usamriid.army.mil

Reference: Coffin et al., Persistent Marburg virus infection in the testes of nonhuman primate survivors. Cell Host and Microbe, http://dx.doi.org/10.1016/j.chom.2018.08.003.

Media Contact

Caree Vander Linden
[email protected]

http://www.usamriid.army.mil

Related Journal Article

http://dx.doi.org/10.1016/j.chom.2018.08.003

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epigenetic “Scars”: How Childhood Trauma Leaves Lasting Marks on Our Genes

October 15, 2025
IFIT2–IFIT3 Complex Blocks Viral mRNA Translation

IFIT2–IFIT3 Complex Blocks Viral mRNA Translation

October 15, 2025

SiNRX1’s Role in Foxtail Millet Drought Resistance

October 15, 2025

Uncovering Leaf Teeth’s Multifunction in Violaceae

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1244 shares
    Share 497 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Triple-Action Iron Supplement Boosts Gut Health and More

Revolutionary Neural Symbolic Model Transforms Space Physics

Multi-Omics Uncover Taxane Neuropathy Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.