• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mechanism of controlling autophagy by liquid-liquid phase separation revealed

Bioengineer by Bioengineer
February 14, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research of autophagy is stepping into the next phase

IMAGE

Credit: Institute of Microbial Chemistry


Under JST’s Strategic Basic Research Programs, Noda Nobuo (Laboratory Head) and Fujioka Yuko (Senior Researcher) of the Institute of Microbial Chemistry, in collaboration with other researchers, discovered that a liquid-like condensate (liquid droplets(1)) in which the Atg protein is clustered through the liquid-liquid phase separation(2) is the structure responsible for the progression of autophagy.

Autophagy is one of the mechanisms through which cellular protein is degraded. Previously, it was known that Atg proteins assemble to form a structure called PAS(3). However, the mechanism through which Atg proteins assemble and the physicochemical property of the formed structures had been unclear.

The research team elucidated characteristics of PAS through observing the Atg protein using a fluorescence microscope and successfully reconstituted PAS in vitro. The team revealed, for the first time, that PAS is in the state of liquid droplets formed by liquid-liquid phase separation of Atg13 together with other Atg proteins and that this liquid droplet is responsible for autophagy.

The finding that liquid-liquid phase separation directly controls autophagy suggests its involvement in a wide range of intracellular life phenomena. Reconsideration of molecular mechanisms underlying various intracellular phenomena is expected to proceed. Moreover, development of autophagy-specific control agents that focus on the regulation of liquid-liquid phase separation in autophagy-related diseases is anticipated.

###

(1) Liquid droplet

A condensate of macromolecules with fluidity created when protein and/or nucleic acids undergo liquid-liquid phase separation. The droplets are also known as “membraneless organelles” and perform various functions within the cell. A droplet spontaneously assumes a spherical form. It also has high internal fluidity, and it actively exchanges molecules with its surroundings.

(2) Liquid-liquid phase separation

This is the phenomenon of a uniform liquid phase separating into multiple liquid phases. It is observed in daily life as the separation of water and oil, and occurs within cells with proteins and nucleic acids.

(3) PAS (Pre-autophagosomal structure)

The collected structure that the Atg protein forms near the vacuole under nutrient starvation in yeast is called PAS. It is assumed that autophagosomes formation starts at PAS.

Media Contact
Nobuo Noda
[email protected]
81-334-414-173

Original Source

https://www.jst.go.jp/pr/announce/20200206/index_e.html

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-1977-6

Tags: BiochemistryBiomechanics/BiophysicsCell BiologyChemistry/Physics/Materials SciencesMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Researchers Discover Novel Energy Potential in Iron-Based Materials

October 31, 2025

UCSB Experimentalists Awarded Gordon and Betty Moore Foundation Grants to Propel New Insights and Innovations

October 30, 2025

Truly strange and thrilling: Quantum oscillations ripple through this science magazine headline

October 30, 2025

Mapping Proteome-wide Selectivity of Diverse Electrophiles

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers Discover Novel Energy Potential in Iron-Based Materials

Impact of Childhood Trauma on Autistic Youth Health

UCSB Experimentalists Awarded Gordon and Betty Moore Foundation Grants to Propel New Insights and Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.