• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Measure squeezing in a novel way

Bioengineer by Bioengineer
June 24, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Weig Group, University of Konstanz

“Squeezing” is used in physics, among other things, to improve the resolution of measuring instruments. It allows disturbing noise to be suppressed in a way that smaller signals can be detected more sensitively.

The research team led by physicist Professor Eva Weig at the University of Konstanz has now been able to show how such a squeezed state can be measured in a much simpler way than with the existing methods. Moreover, the new method allows examining squeezed states in systems where such measurements were not possible before.

The results are published in the current issue of the journal Physical Review X.

###

Read the full article at campus.kn, the online magazine of the University of Konstanz: https://www.campus.uni-konstanz.de/en/science/measure-squeezing-in-a-novel-way

Key facts:

– Original publication: J. S. Huber, G. Rastelli, M. J. Seitner, J. Kölbl, W. Belzig, M. I. Dykman, and E. M. Weig. Spectral evidence of squeezing of a weakly damped driven nanomechanical mode. Physical Review X, 10, 021066, published on 23 June 2020

Link: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.021066

– Development of a new method for measuring “squeezing”.

– Experiment by Jana Huber from the Nanomechanics Group of Professor Eva Weig at the University of Konstanz.

– Theoretical model by Professor Wolfgang Belzig and Dr Gianluca Rastelli from the University of Konstanz and Professor Mark Dykman from Michigan State University (USA).

– With financial support from the European FET Proactive Project HOT (732894), the German Federal Ministry of Education and Research (BMBF) as part of the QuantERA Project QuaSeRT (13N14777), and the Collaborative Research Centre SFB 767 “Controlled Nanosystems” at the University of Konstanz. Mark Dykman’s research is funded by the National Science Foundation (Grant ? DMR-1806473). He is a Senior Fellow of the Zukunftskolleg at the University of Konstanz.

– campus.kn is the University of Konstanz’s online magazine. We use multimedia approaches to provide insights into our research and science, study and teaching as well as life on campus.

Note to editors:
Images can be downloaded here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2020/Bilder/gequetschte_zustaende_grafik.png

Caption: “Satellites” in the spectrum of a vibrating nanostring (lower image insert) for increasing drive power. The different brightnesses of the upper (green) and lower (blue) satellite encode the strength of the squeezing (upper image insert).

Image: Weig Group, University of Konstanz

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2020/Bilder/gequetschte_zustaende.jpg

Caption: Professor Eva Weig, Universität Konstanz

Image: University of Konstanz

Image: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2020/Bilder/gequetschte_zustaende_huber.jpg

Caption: Jana Huber, University of Konstanz

Image: Rainer M. Hohnhaus

Media Contact
Julia Wandt
[email protected]

Tags: Chemistry/Physics/Materials SciencesMolecular PhysicsNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.