• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Materials research revolutionized by a small change

by
June 27, 2024
in Chemistry
Reading Time: 3 mins read
0
Atomic structure of asymmetric SrRuO3 thin films and spin-orbit torque magnetization switching results controlled at the atomic layer level
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Like the flutter of a butterfly’s wings, sometimes small and minute changes can lead to big and unexpected results and changes in our lives. Recently, a team of researchers at Pohang University of Science and Technology (POSTECH) made a very small change to develop a material called “spin-orbit torque (SOT),” which is a hot topic in next-generation DRAM memory.

Atomic structure of asymmetric SrRuO3 thin films and spin-orbit torque magnetization switching results controlled at the atomic layer level

Credit: POSTECH

Like the flutter of a butterfly’s wings, sometimes small and minute changes can lead to big and unexpected results and changes in our lives. Recently, a team of researchers at Pohang University of Science and Technology (POSTECH) made a very small change to develop a material called “spin-orbit torque (SOT),” which is a hot topic in next-generation DRAM memory.

 

This research team, led by Professor Daesu Lee and Yongjoo Jo, a PhD candidate, from the Department of Physics and Professor Si-Young Choi from the Department of Materials Science and Engineering at POSTECH, achieved highly efficient field-free SOT magnetization switching through atom-level control of composite oxides. Their findings were recently published in Nano Letters, an international journal of nanoscience and nanotechnology.

 

SOT arises from the interaction between the spin (magnetic property) and motion (electrical property) of electrons. This phenomenon controls the magnetic state through the movement of spin when current flows. By utilizing magnetic information instead of electrical information, memory power consumption is reduced, making it advantageous for non-volatile memory which retains information even when powered off. Researchers have been actively exploring various materials including semiconductors and metals for these applications. Particularly, there is significant interest in discovering materials that exhibit both magnetism and the “spin-Hall effect.” The study of efficient magnetization switching via SOTs has garnered much attention. However, a challenge remains: opposite spin currents generated within a single layer tend to cancel each other out.

 

In this study, Professors Daesu Lee and Si-Young Choi from POSTECH addressed the problem by systematically modifying the material’s seemingly insignificant structure. Strontium ruthenate (SrRuO3), a complex oxide known for exhibiting both magnetism and spin-Hall effects, has been widely used in SOT research. The team synthesized SrRuO3 with asymmetric spin-Hall effects on the top and bottom surface layers by minutely adjusting the atomic lattice structure of these layers. By creating an imbalance in the spin-Hall effect with a strategically designed asymmetric surface structure, they were able to control the magnetization in a specific direction.

 

Building on this approach, the team successfully achieved efficient magnetization switching without the need for a magnetic field. By incorporating SOT into a device based on SrRuO3, they could reorient the magnetic domain using only an electric current to write and read data. The resulting memory device demonstrated the highest efficiency (2 to 130 times greater) and lowest power consumption (2 to 30 times lower) compared to any known single-layer, field-free system to date. This magnetization switching was accomplished without a magnetic field while preserving the conventional properties of SrRuO3 used in previous studies.

 

Professor Daesu Lee of POSTECH expressed his expectation by saying, “The asymmetric SrRuO3 synthesized by the team is a crucial platform for studying the interaction between ferromagnetism and the spin-Hall effect.” He added, “We look forward to further research to uncover new SOT mechanisms and develop highly efficient, room-temperature, single-phase SOT materials.”

 

The research was conducted with support from the Samsung Future Technology Incubation Program and the Mid-Career Research Program of the National Research Foundation of Korea.



Journal

Nano Letters

DOI

10.1021/acs.nanolett.4c01788

Article Title

Field-Free Spin–Orbit Torque Magnetization Switching in a Single-Phase Ferromagnetic and Spin Hall Oxide

Article Publication Date

12-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

UH Researchers Shatter Thermal Conductivity Limits with Breakthrough in Boron Arsenide

October 21, 2025
blank

BESSY II Unveils Phosphorus Chains: A One-Dimensional Material Exhibiting Unique 1D Electronic Behavior

October 21, 2025

Sustainable Photocatalysis Powered by Red Light and Recyclable Catalysts

October 21, 2025

Compact Chaos-Enhanced Spectrometer Revolutionizes Precision Analysis

October 21, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    139 shares
    Share 56 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Social Media Shapes Kids’ Cognitive Growth

Exploring Food Insecurity Among Harvard Medical Students

High-Fat Diet Disrupts Blood-Testis Barrier Mechanism

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.