• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mass transfer techniques for large-scale and high-density microLED arrays

Bioengineer by Bioengineer
November 15, 2022
in Chemistry
Reading Time: 3 mins read
0
The manufacturing process of microLED displays and representative examples of microLED displays
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recent impressive advances in mass transfer techniques have proven to be a promising solution to overcome the extreme requirements of assembling microLED chips. including laser lift-off technique, contact µTP technique, laser non-contact µTP technique and self-assembly technique. The development of these advanced mass transfer techniques also provides an evaluation of micro LED display techniques for applications in ultra-large displays, flexible electronics and visible light communications.

The manufacturing process of microLED displays and representative examples of microLED displays

Credit: By Furong Chen, Jing Bian, Jinlong Hu, Ningning Sun, Biao Yang, Hong Ling, Haiyang Yu, Kaixin Wang, Mengxin Gai, Yuhang Ma and YongAn Huang

Recent impressive advances in mass transfer techniques have proven to be a promising solution to overcome the extreme requirements of assembling microLED chips. including laser lift-off technique, contact µTP technique, laser non-contact µTP technique and self-assembly technique. The development of these advanced mass transfer techniques also provides an evaluation of micro LED display techniques for applications in ultra-large displays, flexible electronics and visible light communications.

In a new paper published in the International Journal of Extreme Manufacturing, a team of researchers, led by Dr. YongAn Huang from State Key Laboratory of Digital Manufacturing Equipment and Technology, Flexible Electronics Research Center, Huazhong University of Science and Technology, PR China, have summarized comprehensively the extreme processes and applications of mass transfer techniques.

The main aim of this review is to address the latest developments in mass transfer techniques and widespread applications in microLED displays. The general assembly process of microLED displays and the highlight of key challenges of mass transfer techniques have been discussed first. Thereafter, various state-of-the-art mass transfer strategies and principles adopted in different production steps (i.e., epitaxial Lift-off technique and pick-and-place technique) of microLED displays are described. Finally, future research directions and opportunities are discussed in terms of transfer mechanisms, reliability, and cost effects.

Professor Yongan Huang (Huazhong University of Science and Technology) provides an outlook on the future research and applications needed for mass transfer:

“A further in-depth study of interfacial adhesion mechanisms is necessary. The essential relationship between the process parameters and interface reaction (e.g., adhesion strength, fracture mechanics, and chip peeling/flighting state) can undoubtedly provide quantitative guidance for the high reliability of mass transfer.”

“Although lots of small-area transfer schemes have been extensively verified, a further improvement in the reliability, accuracy, and efficiency of large-area transfer techniques is still an area of tremendous opportunities.”

“For achieving high reliability, the development of high precision micro-fabrication/position technologies and material preparations for chips, transfer stamps, and receiver substrates/solders are hotspots. Since lots of mass transfer techniques rely on some specific properties/shapes at specified positions. For example, the fluid self-assembly technique has special requirements for adhesives, which ask for better fluidity, high bonding selectivity between assembled and unassembled surfaces, and acid/high-temperature resistance considering subsequent processes.”

“Further exploration of cost-efficient mass transfer techniques is full of challenges as well as opportunities. The development of reversible laser-assisted μTP has important practical significance, which can easily achieve high throughput for large-scale and high-output manufacturing with the help of parallel laser systems and automated platforms.”

About IJEM:

International Journal of Extreme Manufacturing (IF: 10.036) is a new multidisciplinary, double-anonymous peer-reviewed and fully open-access journal uniquely covering the areas related to extreme manufacturing. The journal is devoted to publishing original articles and reviews of the highest quality and impact in the areas related to extreme manufacturing, ranging from fundamentals to process, measurement and systems, as well as materials, structures and devices with extreme functionalities.

Visit our webpage, Like us on Facebook, and follow us on Twitter and LinkedIn.



Journal

International Journal of Extreme Manufacturing

DOI

10.1088/2631-7990/ac92ee

Article Title

Mass transfer techniques for large-scale and high-density microLED arrays

Article Publication Date

14-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.