• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Marine microbiology: Scavenging to survive below the seafloor

Bioengineer by Bioengineer
October 25, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microorganisms living in the sediments buried below the seafloor obtain their nutrients by using secreted enzymes to degrade adsorbed detritus. A new study shows that in order to survive for long time scales, microorganisms eat one another after they die.

The sediments that underlie the world's oceans harbor a diverse array of microbial communities. Many of the organisms in this cold, anoxic environment depend for their survival on organic matter. Indeed, marine sediments constitute the largest reservoir of organic carbon on Earth, and understanding the dynamics of its recycling is vital for the reliable assessment of the impact of global warming. Much of the fixed carbon found in the sediments consists of detrital proteins and carbohydrates. However, little is known about the microbial groups that are responsible for the breakdown of carbon compounds in the subseafloor. To help fill this gap in our knowledge, William Orsi, Professor of Geomicrobiology in the Department of Earth and Environmental Sciences at Ludwig-Maximilians-Universitaet (LMU) in Munich, set out to characterize these groups by analyzing, at the genetic level, the enzymes that they secrete into their environment. The results of the study have now been published online in the journal Nature Microbiology.

Microorganisms use extracellular enzymes to catalyze the chemical degradation of organic, carbon-containing substances in the surrounding medium. The resulting breakdown products are taken up by specialized transport proteins and serve as energy sources and building blocks for cell growth. All enzymes destined for export from cells contain a short, defined sequence of amino acids that serves as an identification tag, which is recognized by the secretory apparatus that enables them to gain access to the cell exterior. Environmental RNA fragments recovered from sediments can be amplified and analyzed in the laboratory, thus enabling the sequences of these tags, that encode information for producing the enzymes themselves. "Using a novel bioinformatic method, we searched for evolutionarily conserved, and hence functionally important, amino-acid sequence motifs within these recognition sequences. In this way, we were able, for the first time, not only to use genetic data to deduce enzyme functions, but also to specifically identify those enzymes that are secreted by cells that live in these sediments," Orsi explains.

Orsi and his colleagues made use of sequence data that had been obtained in an earlier study of environmental RNA recovered from a deep-sea drilling site off the coast of Peru. The new results show that bacteria, archaea and fungi buried in the sediments at the bottom of the sea produce and secrete a unique constellation of enzymes. These catalysts are capable of degrading biomolecules that are associated with the sedimentary deposits, such as carbohydrates, lipids and proteins – but they can also scavenge nutrients from dead cells. "Many of the enzymes synthesized and secreted by fungal cells specifically attack the cell walls of archaea, while many of the extracellular enzymes released by bacteria can degrade the cell walls of fungi," Orsi says. "In other words, different classes of microbes apparently cannibalize one another's 'carcasses.'" Presumably, the microorganisms utilize this 'necromass' as a source of carbon and energy, which enables them to survive in this hostile anoxic zone, far beyond the reach of sunlight. – The oldest sediments found in the drill core were recovered from a depth of 159 meters below the seafloor and are 2.8 million years old.

The researchers now want to know how much carbon is recycled by the various groups of organisms, in order to estimate their individual contributions to the global carbon cycle. "Our data could then be incorporated into biogeochemical models, which would enhance the predictive power of such models," Orsi says.

###

Media Contact

Luise Dirscherl
[email protected]
0049-892-180-3423

http://www.uni-muenchen.de

http://www.en.uni-muenchen.de/news/newsarchiv/2017/orsi_sekretom1.html

Related Journal Article

http://dx.doi.org/10.1038/s41564-017-0047-9

Share13Tweet7Share2ShareShareShare1

Related Posts

Chinese Scientists Uncover Neural Mechanisms Regulating Energy Expenditure in the Arcuate Hypothalamus

Chinese Scientists Uncover Neural Mechanisms Regulating Energy Expenditure in the Arcuate Hypothalamus

September 23, 2025
Revolutionizing Camel Husbandry with ICT Monitoring System

Revolutionizing Camel Husbandry with ICT Monitoring System

September 23, 2025

Global Research Team Unveils Framework to Study ‘Earth Engineers’

September 23, 2025

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Discover “Protective Switches” That Could Enable Transplantation of Damaged Livers

Diamond Power: The Ideal Ally for Medical Implants

NBL1 Identified as a Critical Factor in Ovarian Cancer Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.