• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mapping the pancreatic islets

Bioengineer by Bioengineer
October 24, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The mechanism leading to development of type 1 diabetes remains a mystery, hampering the ability to find new ways to prevent, treat or even cure this condition. With a new $3.3 million grant, University of California School of Medicine researchers hope to create a high resolution reference map of pancreatic cells that will identify molecular changes that arise during type 1 diabetes.

"A human cell atlas of type 1 diabetes would help us understand what is happening in the pancreas, allowing us to reconstruct cell signaling networks so that we can see what leads to destruction of insulin-producing cells," said Maike Sander, MD, professor in the Departments of Pediatrics and Cellular and Molecular Medicine at UC San Diego School of Medicine, director of the Pediatric Diabetes Research Center and co-principal investigator on the grant. "We have a good idea of how type 1 diabetes develops in mouse models. Mice have been cured many times, but there are substantial differences with human disease so we have to analyze human tissue."

In the United States, 1.25 million people live with type 1 diabetes, an autoimmune disease that destroys pancreatic beta cells. These cells, found in groups called islets of Langerhans, help maintain normal blood glucose levels by producing the hormone insulin — the master regulator of energy (glucose). Impairment and the loss of beta cells interrupts insulin production, leading to type 1 and 2 diabetes.

The multi-year grant from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health (NIH), teams Sander, an expert in islet biology and diabetes, with Kyle Gaulton, PhD, assistant professor in the Department of Pediatrics and the Pediatrics Diabetes Research Center, who brings expertise in genetics and genomics of diabetes, as well as David Gorkin, PhD, and Sebastian Preissl, PhD, associate directors of the UC San Diego Center for Epigenomics, directed by Bing Ren, PhD, professor of cellular and molecular medicine. The Center for Epigenomics will provide the state-of-the-art technology needed to analyze biobank tissue from people with type 1 diabetes needed to create the cell atlas.

"The goal is to fully understand which immune cells and other cell types populate the pancreas when beta cells are destroyed," said Ren. "By generating a comprehensive map of pancreatic cells using cutting-edge epigenomic technologies, we may reveal critical interactions leading to the onset of type 1 diabetes."

Using samples from the NIH's Network for Pancreatic Organ Donors with Diabetes (nPOD), the team is employing epigenomic technology to analyze tissue at the single cell level. The information is a critical piece needed by a consortium of diabetes experts, the NIDDK Human Islet Research Network, of which Sander is a contributing investigator, to find innovative strategies to protect or replace functional beta cell mass in people living with diabetes.

"By generating an atlas of pancreatic cells from non-diabetic and type 1 diabetic individuals, we may identify novel biomarkers of disease that can inform strategies for early intervention or treatment," said Gaulton. "Together our findings may provide key insights into the pathogenic processes of cells in the pancreatic micro-environment that lead to beta cell loss in type 1 diabetes."

###

Media Contact

Yadira Galindo
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Creating Human Kidney Organoids for Porcine Transplants

October 31, 2025

Proteome Atlas Unveils Diabetic Retinopathy Risks

October 31, 2025

Interconnections of Conflict, Climate Change, and Public Health: A Scientific Perspective

October 31, 2025

University of Minnesota Researchers Secure $4M Grant for Pioneering Bipolar Disorder Study

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Creating Human Kidney Organoids for Porcine Transplants

Proteome Atlas Unveils Diabetic Retinopathy Risks

Interconnections of Conflict, Climate Change, and Public Health: A Scientific Perspective

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.