• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mapping the musical mind

Bioengineer by Bioengineer
December 23, 2021
in Biology
Reading Time: 4 mins read
0
Music on the brain
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers in Japan used magnetic resonance imaging to study the brains of secondary school students during a task focused on musical observation. They found that students trained to play music from a young age exhibited certain kinds of brain activity more strongly than other students. The researchers also observed a specific link between musical processing and areas of the brain associated with language processing for the first time.

Music on the brain

Credit: The University of Tokyo via evanat/envato with permission.

Researchers in Japan used magnetic resonance imaging to study the brains of secondary school students during a task focused on musical observation. They found that students trained to play music from a young age exhibited certain kinds of brain activity more strongly than other students. The researchers also observed a specific link between musical processing and areas of the brain associated with language processing for the first time.

Professor Kuniyoshi L. Sakai from the Graduate School of Arts and Sciences at the University of Tokyo is a keen musician, as are many of his colleagues. Although Sakai has studied human language through the lens of neuroscience for the last 25 years, it’s no surprise that he also studies the effect music has on the brain. Inspired by a mode of musical training known as the Suzuki method, which is based on ideas of natural language acquisition, Sakai and his team wanted to explore common neurological aspects of music and language.

“In the field of neuroscience, it is well established that there are areas of the brain that deal specifically with language, and even specialized regions that correspond to different parts of language processing such as grammar or syntax,” said Sakai. “We wondered if training under the Suzuki method might lead to activity in such areas, not when using language, but when engaging with music. Our study reveals this is indeed the case.”

For their investigation, the team enlisted 98 Japanese secondary school students classified into three groups: Group S (Suzuki) was trained from a young age in the Suzuki method, Group E (Early) was musically trained from a young age but not in the Suzuki method, and Group L (Late) was either musically trained at a later age, but not in the Suzuki method, or were not musically trained at all. All the students had their brains scanned by functional magnetic resonance imaging (fMRI), which produced dynamic 3D models of their brains’ activity. During this time, they were given a musical exercise to identify errors in a piece of music played to them. The musical pieces played had errors in one of four musical conditions: pitch, tempo, stress and articulation.

During the exercises, groups S and E showed more overall brain activity than Group L, especially during the pitch and articulation conditions. Furthermore, groups S and E showed activity in very specific regions depending on the kind of error being tested for. Interestingly, Group S showed some unique patterns of activation mostly in areas of the right brain, associated with emotion and melody, during the tempo condition, supporting the ideas behind the Suzuki method.

“One striking observation was that regardless of musical experience, the highly specific grammar center in the left brain was activated during the articulation condition. This connection between music and language might explain why everyone can enjoy music even if they are not musical themselves,” said Sakai. “Other researchers, perhaps those studying neurological traits of artistic experts, may be able to build on what we’ve found here. As for ourselves, we wish to delve deeper into the connection between music and language by designing novel experiments to tease out more elusive details.”
 

###

Journal article

Kuniyoshi L. Sakai, Yoshiaki Oshiba, Reiya Horisawa, Takeaki Miyamae and Ryugo Hayano, “Music-Experience-Related and Musical-Error-Dependent Activations in the Brain”, Cerebral Cortex

DOI: 10.1093/cercor/bhab478        Link: https://doi.org/10.1093/cercor/bhab478

 

Funding
This study received partial funding from Suzuki School of Music, the Talent Education Research Institute. The funder was not involved in the collection, analysis, interpretation of data, or the decision to submit it for publication.

 

Useful links
Sakai Lab – https://www.sakai-lab.jp/english/

Suzuki Method – https://internationalsuzuki.org
Graduate School of Arts and Sciences – https://www.c.u-tokyo.ac.jp/eng_site/

Research contacts
Professor Kuniyoshi L. Sakai

Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, JAPAN
Email: [email protected]

 

Press Contact

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Email: [email protected]

 

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.



Journal

Cerebral Cortex

DOI

10.1093/cercor/bhab478

Method of Research

Experimental study

Subject of Research

People

Article Title

Music-Experience-Related and Musical-Error-Dependent Activations in the Brain

Article Publication Date

23-Dec-2021

COI Statement

This study received partial funding from Suzuki School of Music, the Talent Education Research Institute. The funder was not involved in the collection, analysis, interpretation of data, or the decision to submit it for publication.

Share12Tweet8Share2ShareShareShare2

Related Posts

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025
blank

Avocado Seed Meal Boosts Quail Growth and Meat Quality

October 25, 2025

Peanut Terpene Synthase Analysis Uncovers Biosynthesis Interactions

October 25, 2025

Endophytic Microbes in Garlic Enhance Plant Growth

October 25, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1281 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    190 shares
    Share 76 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LAMB3 Expression Linked to Thyroid Cancer

Evaluating Compassion Focused Therapy for Eating Disorders

Rethinking Care: Professionals Embrace Tech Innovation Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.