• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mapping a genetic risk

Bioengineer by Bioengineer
March 7, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by Pauline Zulueta, Cumming School of Medicine, University of Calgary

The more information you have, the better able you are to predict what will happen next. Clinicians and health researchers often look at gene mutation to predict whether a fetus is at risk for a birth defect, or a person is at risk of developing a disease, but these predictions are not always accurate. University of Calgary researchers have discovered an important factor that changes our understanding of the relationship between gene mutations (genotype) and how they present in people (phenotype) that may, one day, help to improve this accuracy.

"The significance of this work is that it helps us understand how two individuals can have the same genetic mutation, but one can have a disease and the other one can be just fine," says Rebecca Green, PhD, a postdoctoral fellow in the Benedikt Hallgrimsson lab and first author of the study. "It happens commonly in cleft lip and palate; two kids will have the exact same mutation, but one will be born with cleft and one won't."

To better understand why, the researchers looked closely at gene expression levels. It has long been thought that changes in gene expression result in proportional changes in traits determined by those genes. Much of the variation in traits such as facial shape, height or blood pressure is determined by differences in levels of gene expression.

Using mouse embryos, they created a series of mutations to gradually decrease the expression level of a gene called Fgf8, which is important for proper development of the face. They started at 100 per cent and reduced it to 20 per cent of the typical level. Then they mapped the relationship between the two and found the relationship isn't proportional, there isn't a constant ratio, the relationship is non-linear.

"Our results showed even at 50 per cent of the normal level of gene expression you can be totally fine, but as it decreases further it doesn't mean the defect increases – you have a lot of different outcomes: from totally typical to essentially almost not even having a face," says Hallgrimsson, PhD, head of the Department of Cell Biology & Anatomy at the Cumming School of Medicine (CSM). "Those are the kinds of effects that result from a non-linear genotype/phenotype map. If you don't know what those maps look like you can't predict the phenotype from the genome."

The results are published in Nature Communications.

"This is a critical piece of understanding that's relevant to predicting disease from genotypes," says Hallgrimsson. "It adds to our knowledge of how genes can interact with each other and gives us one more answer for how variable outcomes can arise."

Hallgrimsson suspects if researchers looked at most really important genes they would have similar, highly non-linear genotype/phenotype map.

"The science of predicting phenotypes from genes is not as advanced as is commonly thought," says Hallgrimsson. "The prediction tools we've been using need to take non-linearity into account to refine and improve algorithms for using genomic data to predict variation. Those kinds of improvements will be critical for predicting disease risk."

This work also has significance for evolutionary biology. All organisms carry some amount of genetic variation. In order for a species to survive, it must be able to tolerate some amount of genetic variation and still develop and reproduce successfully. This study suggests that nonlinearities in development are a major cause of this phenomenon.

###

Benedikt Hallgrimsson is head of the Department of Cell Biology & Anatomy, a professor in the Department of Radiology, leader of the Genes Development and Health theme at Alberta Children's Hospital Research Institute and a member of the McCaig Institute for Bone and Joint Health at the CSM.

Media Contact

Kelly Johnston
[email protected]
403-220-5012
@UCalgary

http://www.ucalgary.ca

Related Journal Article

http://dx.doi.org/10.1038/s41467-017-02037-7

Share12Tweet7Share2ShareShareShare1

Related Posts

Houston Medical Tech Firm Takes Top Prize at Scientific Sessions 2025 Global Health Tech Competition

November 10, 2025

Revolutionary SynNotch Receptor Detects Amyloid Beta Aggregates

November 10, 2025

Micro-rubbing Boosts Sperm Fertilization Efficiency in ICSI

November 10, 2025

Unveiling Losartan’s Uncommon Side Effect: Angioedema

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Margot and Tom Pritzker Prize for AI in Scientific Research Unveils Winners at Conference

Researchers at University Hospitals Seidman Cancer Center Highlight Age as Key Factor in Metastatic Prostate Cancer Treatment Strategies

Universitat Jaume I’s Institute of Advanced Materials Drives Breakthroughs in Next-Generation Neuromorphic Computing Research

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.