• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Mantis shrimp inspires new breed of light sensors

Bioengineer by Bioengineer
March 3, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ali Altaqui

Inspired by the eyes of mantis shrimp, researchers have developed a new kind of optical sensor that is small enough to fit on a smartphone but is capable of hyperspectral and polarimetric imaging.

“Lots of artificial intelligence (AI) programs can make use of data-rich hyperspectral and polarimetric images, but the equipment necessary for capturing those images is currently somewhat bulky,” says Michael Kudenov, co-corresponding author of a paper on the work and an associate professor of electrical and computer engineering at North Carolina State University. “Our work here makes smaller, more user friendly devices possible. And that would allow us to better bring those AI capabilities to bear in fields from astronomy to biomedicine.”

In the context of this research, hyperspectral imaging refers to technologies that can break down the visible wavelengths of light into more narrow bands. The human eye can’t distinguish between these slight variations in color, but computers can – making hyperspectral imaging valuable for tasks such as determining the chemical composition of objects in the image.

Polarimetry refers to the measurement of polarization in light, which is data that can be used to determine the surface geometry of an object in the image. For example, is the surface rough or smooth? And what is the angle of the surface relative to the light source?

Light is famously tricky to describe, since it is both a particle and a wave. If a wave of light is moving from Point A to Point B, the path between those two points is the direction of the light. If you think of the light as a particle, it is moving in a straight line from Point A to Point B. But the light is also an electromagnetic field that fluctuates like a wave. If you picture that wave as wiggling up and down or side to side as it travels from Point A to Point B, polarization is a measurement of the orientation of that wave along the path.

While there are larger devices that are capable of capturing hyperspectral and polarimetric images, smartphone-sized imaging technologies have run into significant challenges.

For example, the design of cell phone camera technologies results in very slight errors in the alignment of the different wavelengths of light in the final image. The result is not a big deal for taking family photos, but is problematic for scientific image analysis. And the problem is exacerbated when a camera can capture more colors, as is the case with hyperspectral technologies.

The creators of the new light sensors were inspired by the eyes of mantis shrimp, which are exceptionally good at accurately capturing subtle gradations of color. So, the researchers created an organic electronic sensor that mimics the mantis shrimp’s eye. It’s called the Stomatopod Inspired Multispectral and POLarization sensitive (SIMPOL) sensor. And, yes, stomatopod is the fancy name for mantis shrimp.

The researchers developed a prototype SIMPOL sensor that can simultaneously register four spectral channels and three polarization channels. By comparison, the charge-coupled devices used in smartphones have only three spectral imaging sensors, which detect red, green, and blue; and only two polarization channels. In addition, the SIMPOL prototype can measure the four color channels and three polarization channels at one point, whereas CCDs rely on imaging sensors spread across several points.

While only a proof of concept, the researchers used modeling simulations to determine that the design could be used to create detectors capable of sensing up to 15 spatially registered spectral channels.

“SIMPOL’s color channels can discern spectral features 10 times narrower than typical imaging sensors; in other words, it is 10 times more precise,” Kudenov says.

“Our work demonstrates that it is possible to create small, efficient sensors that can simultaneously capture hyperspectral and polarimetric images,” says Brendan O’Connor, co-corresponding author of the paper and an associate professor of mechanical and aerospace engineering at NC State. “I think this opens the door to a new breed of organic electronic sensing technologies.”

###

The paper, “Mantis shrimp-inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging,” appears in the journal Science Advances. First author of the paper is Ali Altaqui, a postdoctoral researcher at NC State. Co-corresponding author of the paper is Brendan O’Connor, an associate professor of mechanical and aerospace engineering at NC State. The paper was co-authored by Pratik Sen, a former Ph.D. student at NC State; Harry Schrickx, a Ph.D. student at NC State; Michael Escuti, a professor of electrical and computer engineering at NC State; the late Robert Kolbas, a former professor of electrical and computer engineering at NC State; Jeromy Rech and Wei You of the University of North Carolina at Chapel Hill; and Jin-Woo Lee and Bumjoon J. Kim of the Korea Advanced Institute of Science and Technology.

The work was done with support from the National Science Foundation under grants 1809753 and 1639429; and from the National Research Foundation of Korea, under grant NRF-2017M3A7B8065584.

Media Contact
Matt Shipman
[email protected]

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsHardwareOpticsResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Snail’s Regenerating Eyes: A Clue to Human Vision Restoration?

Snail’s Regenerating Eyes: A Clue to Human Vision Restoration?

August 6, 2025
blank

Stable 4.8V Cathodes via Supersaturated High-Valence Design

August 6, 2025

Hypoxia Improves Neurodegeneration, Movement in Parkinson’s Mice

August 6, 2025

Forensic Age Estimation in Southwestern Chinese Adolescents

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    74 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Snail’s Regenerating Eyes: A Clue to Human Vision Restoration?

Stable 4.8V Cathodes via Supersaturated High-Valence Design

Hypoxia Improves Neurodegeneration, Movement in Parkinson’s Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.