• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Manipulating the crystallization and assembly of materials in solution by Marangoni flow

Bioengineer by Bioengineer
April 10, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Solution-based approaches are widely used for crystal growth and material assembly. In the solution-based processes, inherent fluid flows always present. Recently, researchers at Peking University developed a general strategy for the regulation of crystal growth and material assembly by utilizing these fluid flows. They are able to control the mass transfer process during the growth and arrangement of materials by manipulating the distribution of the temperature gradient in the wedge-shaped region near the gas-liquid-solid three-phase contact line.

A stable single vortex is produced by Marangoni effect when the top of the solution wedge is heated and the bottom is cooled, while natural evaporation or common substrate-heating conditions result in multiple complex vortexes. The stable single vortex plays an important role in the controllable material growth, assembly, and arrangement. This vortex benefits the oriented deposition of materials because the flow direction is always perpendicular to the three-phase contact line; on the other hand, the high concentration zone is always located at the tip of the solution wedge due to the co-effect of Marangoni flow and the solvent evaporation.

The strategy with the top-heating-bottom-cooling setup is suitable for different types of substrates and a variety of materials including inorganic, organic, hybrid, and bio- materials. It is also applicable for patterning materials on large-area substrates. The large-area CH3NH3PbI3 arrays deposited on flexible substrates via this method are directly used to construct flexible photodetectors with good performance.

###

This research was published in National Science Review, entitled “Material Patterning on Substrates by Manipulation of Fluidic Behavior”. Professor Yan Li from College of Chemistry and Molecular Engineering at Peking University and Professor Hao Wang from College of Engineering at Peking University are corresponding authors of this article, and Yitan Li, a Ph. D. candidate from Academy for Advanced Interdisciplinary Studies at Peking University, is the first author.

See the article:

Yitan Li, Hao Wang, Henglu Xu, Shiting Wu, Xuemei Li, Jiapeng Yu, Chaoyu Huang, Zeyao Zhang, Hao Sun, Lu Han, Meihui Li, Anyuan Cao, Zhenhai Pan, and Yan Li

Material patterning on substrates by manipulation of fluidic behavior

Natl Sci Rev (March 2019) doi: 10.1093/nsr/nwz034

https://doi.org/10.1093/nsr/nwz034

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country’s rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact
Yan Li
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwz034

Tags: Chemistry/Physics/Materials Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

November 7, 2025
Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

November 7, 2025

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating the Eating Behavior and Appetite Questionnaire

Mindfulness Eases Anxiety, Improves Sleep for Caregivers

Neurogenic Dysfunction Syndrome Post-Acute Brain Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.