• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Manipulating mitochondrial networks could promote healthy aging

Bioengineer by Bioengineer
October 26, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Boston, MA – Manipulating mitochondrial networks inside cells — either by dietary restriction or by genetic manipulation that mimics it–may increase lifespan and promote health, according to new research from Harvard T.H. Chan School of Public Health.

The study, published online October 26, 2017 in Cell Metabolism, sheds light on the basic biology involved in cells' declining ability to process energy over time, which leads to aging and age-related disease, and how interventions such as periods of fasting might promote healthy aging.

Mitochondria — the energy-producing structures in cells — exist in networks that dynamically change shape according to energy demand. Their capacity to do so declines with age, but the impact this has on metabolism and cellular function was previously unclear. In this study, the researchers showed a causal link between dynamic changes in the shapes of mitochondrial networks and longevity.

The scientists used C. elegans (nematode worms), which live just two weeks and thus enable the study of aging in real time in the lab. Mitochondrial networks inside cells typically toggle between fused and fragmented states. The researchers found that restricting the worms' diet, or mimicking dietary restriction through genetic manipulation of an energy-sensing protein called AMP-activated protein kinase (AMPK), maintained the mitochondrial networks in a fused or "youthful" state. In addition, they found that these youthful networks increase lifespan by communicating with organelles called peroxisomes to modulate fat metabolism.

"Low-energy conditions such as dietary restriction and intermittent fasting have previously been shown to promote healthy aging. Understanding why this is the case is a crucial step towards being able to harness the benefits therapeutically," said Heather Weir, lead author of the study, who conducted the research while at Harvard Chan School and is now a research associate at Astex Pharmaceuticals. "Our findings open up new avenues in the search for therapeutic strategies that will reduce our likelihood of developing age-related diseases as we get older."

"Although previous work has shown how intermittent fasting can slow aging, we are only beginning to understand the underlying biology," said William Mair, associate professor of genetics and complex diseases at Harvard Chan School and senior author of the study. "Our work shows how crucial the plasticity of mitochondria networks is for the benefits of fasting. If we lock mitochondria in one state, we completely block the effects of fasting or dietary restriction on longevity."

Next steps for the researchers including testing the role mitochondrial networks have in the effect of fasting in mammals, and whether defects in mitochondrial flexibility might explain the association between obesity and increased risk for age-related diseases.

###

Other Harvard Chan authors included Pallas Yao, Caroline Escoubas, Renata Goncalves, Kristopher Burkewitz, and Raymond Laboy.

Funding for the study came from the Lawrence Ellison Medical Foundation (U54CA155626), the Glenn Foundation for Medical Research, the National Institutes of Health (1R01AG044346, 1R01AG045351), and the American Diabetes Association/Canadian Diabetes Association PF-3-13-4342.

"Dietary Restriction and AMPK Increase Lifespan via Mitochondrial Network and Peroxisome Remodeling," Heather J. Weir, Pallas Yao, Frank K. Huynh, Caroline C. Escoubas, Renata L. Goncalves, Kristopher Burkewitz, Raymond Laboy, Matthew D. Hirschey, and William B. Mair, Cell Metabolism, online October 26, 2017, doi: 10.1016/j.cmet.2017.09.024

Visit the Harvard Chan School website for the latest news, press releases, and multimedia offerings.

Harvard T.H. Chan School of Public Health brings together dedicated experts from many disciplines to educate new generations of global health leaders and produce powerful ideas that improve the lives and health of people everywhere. As a community of leading scientists, educators, and students, we work together to take innovative ideas from the laboratory to people's lives — not only making scientific breakthroughs, but also working to change individual behaviors, public policies, and health care practices. Each year, more than 400 faculty members at Harvard Chan School teach 1,000-plus full-time students from around the world and train thousands more through online and executive education courses. Founded in 1913 as the Harvard-MIT School of Health Officers, the School is recognized as America's oldest professional training program in public health.

Media Contact

Todd Datz
[email protected]
617-432-8413
@HarvardHSPH

Home

http://dx.doi.org/10.1016/j.cmet.2017.09.024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

How Different ALK Fusion Variants Impact Lung Cancer Treatment Success

September 23, 2025
Tracking Motor Skills Across the Lifespan: Using Percentile Reference Curves in Practice

Tracking Motor Skills Across the Lifespan: Using Percentile Reference Curves in Practice

September 23, 2025

Chinese Scientists Uncover Neural Mechanisms Regulating Energy Expenditure in the Arcuate Hypothalamus

September 23, 2025

Revolutionizing Camel Husbandry with ICT Monitoring System

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

USC Scientists Secure $8 Million NIH Grant to Develop Innovative Alzheimer’s Drug

Exploring Factors Behind Decline of Hispanic Mortality Advantage

Provider Misperceptions, Rather Than Knowledge or Profit Motives, Fuel Inappropriate Antibiotic Overuse for Childhood Diarrhea in India

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.