• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mangrove expansion and climatic warming may help ecosystems keep pace with sea level rise

Bioengineer by Bioengineer
August 29, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Sea level rise and extreme weather events have become harsh realities for those living along the world's coasts. The record-breaking hurricanes of the past decade in the United States have led to staggering tolls on coastal infrastructure and communities, leading many local governments to consider the benefits of natural coastal barriers.

In a landmark study titled "Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland" a team of Villanova University biologists have documented that coastal wetlands in the southeastern United States are responding positively to rising temperatures both in their growth and in their ability to build soil to keep pace with sea level rise.

Published August 29 in the British Ecological Society's Journal of Ecology, the study's results are a ray of sunshine in the climate change forecast. Members of the research team included Glenn A. Coldren, J. Adam Langley, and Samantha Chapman, from Villanova University's Department of Biology, Villanova, PA and Ilka C. Feller of The Animal-Plant Interaction Lab, Smithsonian Environmental Research Center, in Edgewater.

The Villanova research team's two-year experiment, funded by grants from the National Aeronautics and Space Administration (NASA), was performed at the Kennedy Space Center (KSC) within the Merritt Island National Wildlife Refuge (MINWR) on Merritt Island. The KSC was an ideal location to conduct the research being situated at the intersection of two wetland biomes, salt marshes and mangroves. The implications for the KSC are serious since coastal wetlands and sand dunes help protect NASA's $5.6 billion low-lying infrastructure against rising seas.

The large-scale warming experiment was conducted in place in the MINWR using large passive warming chambers to increase both marsh and mangrove ecosystem air temperatures. The Villanova researchers found that experimental warming both doubled plant height and accelerated the transition from marsh to mangrove.

Mangroves are woody trees with more complex roots than their grassy marsh plant counterparts. When subjected to temperatures similar to those that will occur in a warmer future, mangrove plots showed increased surface elevation which is a measure of the wetland's ability to build soil and keep pace with sea level rise.

"Our study provides some evidence that the ongoing reshuffling of species on earth's surface could allow for some adaptation to the same global changes that are causing them," says Chapman. "Conserving and restoring our coastal wetlands can help humans adapt to climate change."

With their unique structure and migration to higher latitudes caused by climate change, mangroves may help coasts keep pace with sea level rise and combat severe weather events like hurricanes. Expansion of these natural barriers in areas like the Kennedy Space Center may enhance the sustainability of coastal communities as they face accelerating sea-level rise in a warmer future.

"The study links the growth of individual plants, and particularly their roots, to the survival of an entire ecosystem. The long-term strength of the mangrove effects we identified may determine what the maps of our southeastern coastlines look like in the future," says Langley. "This mangrove effect could benefit coastal wetlands around the world."

"Our experiment highlights the impact multiple interacting aspects of climate change, such as warming and sea level rise, can have on the outcome of species invasions resulting from climate change — and on the capacity of those communities to protect shorelines," concluded Coldren.

###

Media Contact

Kathleen Scavello
[email protected]
610-519-6733

http://www.demon.co.uk/bes

http://dx.doi.org/10.1111/1365-2745.13049

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025
Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025

New Evolutionary Classification of Rare CRISPR–Cas Variants

November 6, 2025

European Research Council Awards €10M Synergy Grant to RODIN Project Exploring Cells as Architects of Next-Generation Biomaterials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Continuous Cell-Type Diversification Shapes Mouse Visual Cortex

Unraveling ALS: Multi-Omics and Environmental Toxin Links

Sleep Duration and Osteoporosis Risk in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.